arXiv:2510.05064v1 [cs.LG] 6 Oct 2025

Preprint

BOOMERANG DISTILLATION ENABLES ZERO-SHOT
MODEL SI1ZE INTERPOLATION

Sara Kangaslahti!, Nihal V. Nayak!; Jonathan Geuter'?; Marco Fumero?®,
Francesco Locatello’, David Alvarez-Melis'*

"Harvard University >Kempner Institute 3IST Austria
sarakangaslahti@g.harvard.edu

ABSTRACT

Large language models (LLMs) are typically deployed under diverse memory and
compute constraints. Existing approaches build model families by training each
size independently, which is prohibitively expensive and provides only coarse-
grained size options. In this work, we identify a novel phenomenon that we call
boomerang distillation: starting from a large base model (the teacher), one first
distills down to a small student and then progressively reconstructs intermediate-
sized models by re-incorporating blocks of teacher layers into the student—
without any additional training. This process produces zero-shot interpolated
models of many intermediate sizes whose performance scales smoothly between
the student and teacher, often matching or surpassing pretrained or distilled mod-
els of the same size. We further analyze when this type of interpolation succeeds,
showing that alignment between teacher and student through pruning and distil-
lation is essential. Boomerang distillation thus provides a simple and efficient
way to generate fine-grained model families, dramatically reducing training cost
while enabling flexible adaptation across deployment environments. The code and
models are available at https://github.com/dcml-lab/boomerang-distillation.

1 INTRODUCTION

As large language models (LLMs) become integral to various applications, the challenge of
adapting them efficiently to diverse hardware and deployment constraints is increasingly pressing.
These models are now used in a wide variety of settings, ranging from edge devices (Narayan et al.,
2025) to large-scale clusters (Comanici et al., 2025). Real-world deployment requires balancing
multiple constraints, such as compute resources, energy consumption, and the trade-off between
accuracy and latency (Huyen, 2022; Wu et al., 2022; Khandelwal et al., 2025). To address these
diverse requirements, model developers increasingly release families of LLMs spanning different
parameter scales (Team et al., 2024; Grattafiori et al., 2024; Yang et al., 2025). However, producing
such model families remains highly resource-intensive. Conventional pretraining pipelines require
enormous compute, making it impractical to train many variants from scratch. As a result, existing
families typically include only a small set of coarse-grained model sizes, leaving significant gaps
in the trade-off space between efficiency and capability. In this work, we investigate cost-efficient
methods to construct pretrained LLM families with fine-grained size increments, enabling smoother
adaptation to heterogeneous deployment constraints.

Knowledge distillation has become the standard approach for producing LLM families of different
sizes (Muralidharan et al., 2024). Rather than pretraining each model from scratch, practitioners
often distill a pretrained feacher model into smaller student models (Hinton et al., 2015). Student
models may be initialized either randomly or using parameter reduction techniques such as layer
dropping (Men et al., 2024; Chen et al., 2025) or neuron pruning (Ma et al., 2023). They are then
trained on large text corpora with distillation objectives, often combined with additional alignment
losses such as cosine similarity or L2 distance. This paradigm is significantly more compute-
efficient than independent training, reducing both FLOPs and the number of training tokens

*Equal contribution.

https://github.com/dcml-lab/boomerang-distillation
https://arxiv.org/abs/2510.05064v1

Preprint

place | Replac

‘aye, v |aye,' ay 'y Cosin, e\css' Cosine Ioss v o

T
(DStudent initialization @ Knowledge distillation (®Student patching

Figure 1: Overview of boomerang distillation. @ In this example, the student model is initialized by
dropping layers from the pretrained teacher model. @ The teacher model is distilled into the student
model with cross-entropy loss, knowledge distillation loss, and cosine distance loss (Equation 1).
® After training the student model, a block of teacher layers corresponding to a student layer is
inserted back into the model to get the zero-shot interpolated model.

required (Muralidharan et al., 2024). However, its key limitation is that each student still requires
a full training run. As a result, scaling to fine-grained model sizes remains prohibitively expensive.

In this work, we identify a surprising phenomenon we call boomerang distillation (Figure 1): start-
ing from a large teacher model, one can first distill down to a small student and then progressively re-
construct larger models by re-incorporating subsets of teacher layers into the student. This procedure
yields a spectrum of intermediate model sizes without any additional training. Remarkably, these
hybrids consistently achieve performance that interpolates smoothly between the student and teacher
across downstream tasks (Figure 2). Unlike existing pruning-based approaches, which only use in-
formation from the teacher, boomerang distillation leverages both student and teacher information
to form true interpolations between them. As a result, it consistently yields models that substantially
outperform naive layer dropping and more advanced pruning techniques. In short, boomerang dis-
tillation reveals that zero-shot model size interpolation is not only possible, but also highly effective.

We conduct extensive experiments and ablations to characterize this phenomenon. First, we show
that boomerang distillation only emerges when the student model is initialized from teacher weights
and trained with a distillation objective plus an alignment loss such as cosine distance (§3.1). The
resulting interpolated models match or exceed the performance of tailored distilled models of the
same—or even larger—size (§3.2), with the alignment loss playing a critical role in the stability of
boomerang distillation (§3.3). We further show that boomerang distillation generalizes to existing
distilled models such as DistilBERT (Sanh et al., 2019) when combined with BERT (Devlin
et al., 2019) (§3.4). Finally, we demonstrate that boomerang distillation-based models consistently
outperform pruning methods across a variety of settings (Men et al., 2024; Yang et al., 2024) (§3.5)
and provide extensive ablations aimed at understanding the impact of training data budgets and
layer selection strategies (§3.6).

Our work makes the following contributions:

* We introduce boomerang distillation, a general phenomenon in model distillation that enables the
creation of a family of models spanning student and teacher sizes without any additional training
by patching the student with blocks of teacher layers (§2). These models smoothly interpolate size
and performance between the student and teacher (§3.1). To our knowledge, this is the first study
to identify and analyze this phenomenon and its zero-shot interpolation capabilities.

* We show that these interpolated models achieve performance on par with, and in some cases
surpass, standard distilled models of the same size (§3.2). We also demonstrate the phenomenon
across open-source models such as DistilBERT and BERT, highlighting its generality (§3.4).

* We perform thorough experiments to understand the conditions under which boomerang distilla-
tion arises (§3.3, Appendices E, F, G, H, I, and J) and demonstrate its consistent advantages over
existing pruning-based approaches (§3.5). For example, we show that alignment loss, such as
cosine distance loss, enables us to create boomerang distilled models with stable performance.

2 BOOMERANG DISTILLATION: KNOWLEDGE DISTILLATION WITH
STUDENT PATCHING

We now describe the procedure underlying boomerang distillation. It consists of three key stages:
(1) student initialization, (2) knowledge distillation, and (3) student patching (Figure 1).

Preprint

Preliminaries. We consider the problem of distilling a pretrained transformer-based language
model (teacher) into a smaller student model. Let the teacher LLM T have N transformer
layers, and the student model from the same family S have M < N layers. We denote the

parameters of the teacher and student models, respectively, as O = (0F, 0(T1), ceey H(TN), BTD) and
0s = (0%, Ogl), .. ,OéM), 0L), where 0() represents the i-th transformer block, and 8% and 67

denote the embedding layer and LM head, respectively. All student and teacher layers produce
hidden states of the same dimension. We assume access to corpus X to train the student model
using a knowledge distillation objective; but do not assume access to the teacher’s pretraining data,
consistent with realistic settings (Yang et al., 2025). Our goal is to learn @5 such that after training,
for any nonnegative K with M 4+ K < N, we can deterministically construct an intermediate
model 87 with M + K layers from (6g, 07).

2.1 STUDENT INITIALIZATION

To initialize the student model, we partition the teacher’s N transformer layers into M contiguous
blocks B = (b ... b)), where the i-th block b(") consists of the layers (85", . .. %+~
for some indices 1 = ¢ < --- < {3y < N (with b(M) £ (05,?1”), e BSFN))). Following prior work
(Chen et al., 2025), we initialize the student as O(Si) = Bgi), i=1,...M, OE = 0?, and 95 = 9?.

2.2 KNOWLEDGE DISTILLATION

The initialized student model is then trained via distillation to recover performance while remaining
aligned to the teacher model, which will enable subsequent interpolation by patching the student
model (Section 2.3).

Given a training sequence = = (z1, ..., 1) ~ X of L tokens, let z] = T(x;) and zjs = S(z<;)
be the logits of the teacher and student model for the j-th token. Following standard knowledge
distillation approaches (Hinton et al., 2015; Muralidharan et al., 2024), in addition to the cross
entropy loss Log(z; | £<;;0s), we add a KL divergence loss:

Lxi(z<;;05) =72 - KL (softmax(ij/T) I softmax(zf/T))

where 7 is a temperature parameter. To further align representations, we introduce a cosine distance
loss (Sanh et al., 2019), which encourages the hidden states of the student across all layers to remain
close to those of the teacher model. We refer to this as the alignment loss. We align the hidden states

of the ¢-th layer in the student model with the hidden states produced by teacher block b®, which
corresponds to the (¢;,1 — 1)-th layer in the teacher, using a cosine distance loss:

7 S,i Tlis1—1 S.i Tlir1
Cltecyis) = 1= (2720) [(1)

where wgs’i) and w§-T’€”1 =Y are the hidden states of i-th layer of the student and (¢;+1 — 1)-th layer

of the teacher for the j-th token given input x ;.
The full training objective for the student is therefore:
M

L(x,05) = Lcr(z; | x<j;0s) + Ak Lxn(Z<j;05) + Acos Zﬁgf}s(iﬁq; 0s))
i=1
where Ay, > 0and A5 > 0 are hyperparameters tuned to weigh the three loss terms (Appendix C).

2.3 STUDENT PATCHING

After distillation, we construct interpolated models by selectively patching the student with layers
from the teacher model (Figure 1, step ®). Specifically, replacing the i-th student layer with its

corresponding block of teacher layers b(*) = (055 Do, 0¥ ”171)) yields:
1) g . gli=1) g(i) gli+1) = g(M) 1) g . gl=1) y(i) gli+1) = (M)
(05,05 05 05,05 05) — (05,05 05 b, 0 0s5’)
_ (9591), 05;2)’ . 76591'*1)’ 05{1‘)7 0¥i+1), . 70¥i+1—1)7 0(Si+1)7 . 7agM))

Preprint

Applying this substitution repeatedly produces models of various intermediate sizes between S and
T. Once we have the set transformer layers for the interpolated model, we pick the embedding

layer from the model that contributes the first layer (i.e., pick 85 when using 0(51), and 6% when

using b)), and likewise pick the LM head from that model that contributes the last layer.

3 EXPERIMENTS

In this section, we study the boomerang distillation phenomenon in depth. We begin by identifying
necessary conditions for it to succeed (§3.1). Then, we compare the quality of the zero-shot inter-
polated models created from boomerang distillation to models trained with standard knowledge dis-
tillation (§3.2). Next, we analyze the role of individual loss terms in enabling interpolation between
student and teacher (§3.3). We further demonstrate that boomerang distillation also arises in existing
pretrained models (§3.4). Then, we compare boomerang distillation to layer pruning methods, show-
ing that our interpolated models perform significantly better than layer pruning approaches for the
same model size (§3.5). Finally, we summarize additional experiments with boomerang distillation
on the impact of training tokens and initial student model sizes (§3.6). In these experiments, we use
Qwen3-4B-Base as our main teacher model. In Appendices F, G, and H, we reproduce experiments
from Sections 3.1, 3.2, and 3.3 with Pythia-2.8B and Llama-3.2-3B as the teacher models and report
similar findings, demonstrating that boomerang distillation is a general phenomenon in LLMs.

Boomerang Distillation Implementation Details. We primarily use Qwen3-4B-Base (Yang
et al., 2025) as the teacher model. The student model, with 2.7B inference-time parameters, is
initialized by removing every other layer (except the last layer) from the teacher model and is
then trained on the deduplicated Pile (Gao et al., 2021) using the overall loss (Equation 1) with a
budget of 2.1B tokens. To create interpolated models, we patch the distilled student model with
corresponding contiguous blocks of teacher layers in reverse order, starting from the last layer. In all
experiments, we report the inference-time parameters as the parameter count. For more details on
student initialization, training, and patching order for all pretrained teacher models, see Appendix B.

Datasets. We use the same classification and generation datasets throughout the paper. We use
lm-evaluation-harness (Gao et al., 2023) to evaluate all of the models and report classi-
fication accuracy on ten datasets and exact match accuracy on three generation datasets. We also
compute perplexity on the WikiText dataset (Merity et al., 2017) for all models and report it in
Appendix K.1. For more details on datasets, see Appendix D.

3.1 THE BOOMERANG DISTILLATION PHENOMENON

In this section, we study conditions necessary for boomerang distillation to occur, and demonstrate
its strong interpolation performance between the student and teacher model.

Setup. We evaluate against two key baselines: (1) naive layer pruning and (2) distillation with
a randomly initialized student model. In naive layer pruning, we iteratively remove layers from

the teacher model, starting with the second layer and then every other layer (up to O;N_Q)) until
the desired model size is attained. This corresponds to the same set of teacher layers used in the
distilled and patched student model, but without any distillation training. This baseline tests if
knowledge distillation (2.2) is essential for teacher patching. For the second baseline, distillation
with a randomly initialized student model, instead of initializing the student from teacher layers,
we initialize all weights randomly (leaving the architecture unchanged) before distilling with the
same loss from Equation 1. This baseline tests if student initialization with teacher weights (2.1) is
required for student patching to create models with interpolated performance.

Results. Figure 2 shows that boomerang distillation creates models whose size and performance
interpolate smoothly (for a complete breakdown, see Appendix Figures 27 and 31). This enables
us to create a full suite of intermediate models without any additional training. We show that
boomerang distillation occurs when the layer-pruned, distilled student model is patched with corre-
sponding teacher layers. In contrast, we find that the boomerang distillation phenomenon does not
occur for naive layer pruning and randomly initialized distillation baselines. When we naively drop
layers, there is a significant drop in classification and generation performance for models of size less

Preprint

Classification Accuracy (1) Generation Accuracy (1)
0.4
0.6
Layer dropping strategy
gO.B g Boomerang distillation
§ A § 0.2 === Naive layer pruning
< < Interpolation from randomly
0.4 initialized distilled model
by ﬁ“w
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
Model type

i\z Qwen3-4B-Base A Distilled models B Pruned models ® Interpolated models

Figure 2: Boomerang distillation produces models with smooth size—performance interpola-
tion, consistently outperforming naive layer pruning and interpolation from randomly initialized
distilled models. These results indicate that effective interpolation depends on initializing the stu-
dent with teacher weights and training under a knowledge distillation objective.

Qwen3-8B-Base Classification Accuracy (1) Pythia-6.9B Classification Accuracy (1) Llama-3.2-3B Classification Accuracy (1)

5
ot

Boomerang distillation

o) oy o
€05 e Ix e = Naive layer pruning
g A 30.40 3 |A i
8 g U S Interpolation from randomly
< < <04 initialized distilled model
0.4
0.35 f
M_‘Jﬂ "
6 7 8 4 5 6 7 2.5 3.0 3.5
Parameter Count (Billions) Parameter Count (Billions) Parameter Count (Billions)

Model type
i\(Pretrained models A Distilled models B Pruned models ® |Interpolated models

Figure 3: Boomerang distillation emerges across model families. Shown here for Qwen3-8B,
Pythia-6.9B, and Llama-3.2-3B, boomerang interpolation yields intermediate models with smooth
accuracy—parameter scaling, outperforming naive layer pruning and random interpolation baselines.

than 4B inference-time parameters. However, we do not see such a dramatic drop in performance
in the interpolated models created with boomerang distillation. In the randomly initialized model,
there is almost no gain in performance when patching teacher layers to the distilled student. These
results show that layer pruning or distillation alone is not sufficient for boomerang distillation.
In Figure 3, we show that boomerang distillation also occurs in Qwen3-8B-Base, Pythia-6.9B,
and Llama-3.2-3B, demonstrating that boomerang distillation is a general phenomenon in distilled
LLMs that can be observed across various model sizes and families (See Appendix F for full
results). We note that in the Llama model, we keep the first two layers instead of the last two layers
during student initialization and patch the model starting from the first layer. This is because the
first two layers of the teacher model have low cosine similarity with each other, and excluding
them from the training hurts the performance of the student model and the interpolated models (see
Appendix I for cosine similarity analysis).

3.2 How GooOD 1S BOOMERANG DISTILLATION?

To test the quality of the zero-shot interpolated models created using boomerang distillation, we
compare them against models of intermediate sizes created through standard knowledge distillation.

Setup. For standard knowledge distillation, we follow the training setup in Appendix B to train
intermediate-size models. We initialize the intermediate models by removing every other teacher
model layer starting from the second layer and continuing up to layer 953) to match the set of layers
in the same size interpolated model. For a fair comparison, we train the intermediate model with
our overall loss (Equation 1) for 2.1B tokens. To contextualize these results, we also compare with

pretrained LLMs: Pythia-2.8B (Biderman et al., 2023) and Llama-3.2-3B (Grattafiori et al., 2024).

Results. Boomerang distillation produces interpolated models that show comparable performance
to the intermediate models trained via standard knowledge distillation, even outperforming them at

Preprint

Classification Accuracy (1)

Generation Accuracy (1)

I 0.4
0.60 A A 0.3 Boomerang distillation
A -~ A Distilled intermediate
§ * § A A models
50.55 5 .
3 2 X 30.2 A * Pythia-2.8B
< X < Y Llama-3.2-3B
0.50 . o &y ¥¢ Quen3-4B-Base
e d Sepobod
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
Model type

Y Pretrained models A Distilled models ® |Interpolated models

Figure 4: Interpolated models produced using boomerang distillation have comparable perfor-
mance to pretrained and standard distilled models. We compare the interpolation performance
of boomerang distillation to distilled models initialized with the corresponding teacher layers and
distilled using Equation 1. At small sizes, the interpolated models have comparable performance to
distilled and pretrained models. At larger sizes, the interpolated models outperform distilled models,
likely due to catastrophic forgetting caused by distilling on a presumably lower-quality corpus.

larger sizes (Figure 4; for a per-task breakdown, see Appendix Figures 28 and 32). A key difference
between the models from boomerang distillation and the standard distilled models is that we only
need to train a single small student model and create interpolated models by patching teacher
weights without additional training. This dramatically reduces the time and resources needed to
create a family of intermediate-sized models by orders of magnitude.

We also observe that the interpolated models achieve comparable performance to existing pre-
trained models. Despite the student model being trained on far fewer tokens than Pythia-2.8B
and Llama-3.2-3B, boomerang distillation adaptively produces interpolated models of comparable
size and performance without any additional training. Finally, in Appendices G and H, we also
find that interpolated models created with boomerang distillation using Pythia and Llama achieve
comparable performance to distilled models. This demonstrates the universality of the boomerang
distillation phenomenon across different model families.

In Figure 4, we observe that the intermediate models at larger sizes underperform boomerang
distillation models. We suspect that updating the weights of Qwen3-4B-Base on a presumably lower-
quality corpus, such as The Pile, leads to catastrophic forgetting (French, 1999; Kirkpatrick et al.,
2017), which results in a drop in performance. This is a practical problem with open-weight models
because we often do not have access to the original training corpus (Jiang et al., 2023; Yang et al.,
2025). Despite that, boomerang distillation can retain the benefits of the original model by patching
its weights back into the student model. We show that such a drop in performance also occurs for
intermediate distilled models for Llama-3.2-3B (Figure 17 in Appendix H), but not for intermediate
models created by distilling Pythia-2.8B (Figure 14 in Appendix G) since it is trained on The Pile.

3.3 EFFECT OF KNOWLEDGE DISTILLATION

In this experiment, we aim to understand which of the losses in the knowledge distillation objective
contribute to the boomerang distillation phenomenon.

Setup. We compare four loss terms in this experiment: (1) cross entropy (Lcg), (2) cross
entropy with knowledge distillation loss (Lo + Lkr), (3) cross entropy with alignment loss

(Leg+Y ’ E(.?s), (4) overall loss, i.e., cross entropy with knowledge distillation loss and alignment

loss (Lcg + Lk +); ££§)s). We follow the setup from Appendix B to initialize the student models
and train on 2.1B tokens with different loss objectives.

Result. Figure 5 shows that the cross entropy with knowledge distillation loss and alignment
loss (Equation 1) creates interpolated models with the lowest perplexity compared to the other loss
terms (for full per-task breakdown see Appendix Figures 29 and 33). We do not see a meaningful
difference in classification and generation accuracies on downstream tasks for the majority of model
sizes. However, at both extremes of intermediate model size (leftmost and rightmost interpolated

Preprint

Wikitext Perplexity (/) Classification Accuracy (1) Generation Accuracy (1)
0.4
20 A a
0.60 0.3 | Loss terms
z g g g Foog| T L
3 £0.55 ~ < 7 Leg+ Liw
2 3 go.2 J (i
g kK y g r Lop+ Y, £,
5 g
0.50 24 " o Lop+ L+ 3, L0
4 ~
0.45 b ; A L
3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions) Parameter Count (Billions)

Model type
i\(Qwen3-4B-Base A Distilled models @ Interpolated models

Figure 5: Per-layer loss yields stable and smoother interpolation performance. Models distilled
with per-layer cosine distance loss have smoother interpolation behavior across all model sizes.
However, boomerang distillation still occurs for models without per-layer cosine distance loss, indi-
cating that initialization using teacher layers provides substantial alignment information.

DistilBERT Wikitext Pseudo-Perplexity (/) DistilGPT2 Wikitext Perplexity ({)
200
2
%2[) 2150 Boomerang
5 5 distillation
Qc‘; 5 Naive layer
'% a 100 pruning
€10
A 501 A
80 100 120 140 160
Parameter Count (Millions) Parameter Count (Millions)

Model type
i\(Pretrained models A Distilled models B Pruned models ® |Interpolated models

Figure 6: Boomerang distillation works for off-the-shelf pretrained models without any addi-
tional training. Boomerang distillation via student patching DistilBERT (Sanh et al., 2019) with
BERT layers (Devlin et al., 2019) (left) and student patching DistilGPT2 (Sanh et al., 2019) with
GPT2 layers (Radford et al., 2019) (right) produces interpolated models that significantly outper-
form naive layer pruning from the teacher model.

models), there is slight instability in performance, especially for the cases with no per-layer
loss. These models correspond to patching the last few and first few teacher layers, respectively,
indicating that layer-wise alignment is especially important for the first and last layers. This aligns
with prior work showing that the initial and last model layers are distinct, while intermediate
layers are more interchangeable (Gromov et al., 2024; Men et al., 2024). In Appendices G and
H, we demonstrate that Pythia and Llama models produce a similar ranking of loss objectives by
perplexity, while also showing meaningful differences in classification accuracy.

While these results confirm that alignment losses, such as cosine distance loss, are needed to achieve
the best-performing interpolated models, we still observe boomerang distillation even when students
are trained with only a cross entropy objective. This suggests that initializing the student with teacher
weights is itself a central factor in enabling boomerang distillation, consistent with our findings in
Section 3.1. An open question, however, is whether comparable performance and stability can be
achieved without retaining the teacher weights in memory, which would substantially reduce the
memory footprint.

3.4 ZERO-SHOT MODEL SIZE INTERPOLATION WITH EXISTING OFF-THE-SHELF MODELS

Here we show that boomerang distillation occurs even between popular existing off-the-shelf open-
source models and their distilled variants (Devlin et al., 2019; Radford et al., 2019; Sanh et al., 2019).

Setup. We interpolate between off-the-shelf DistilBERT and BERT, and DistilGPT2 and GPT2.
Similar to our setup, DistilBERT and DistilGPT?2 are initialized by pruning alternate layers from
their teacher models, BERT and GPT2, and then trained with knowledge distillation and cosine
distance loss objective. Although DistilBERT and DistilGPT2 use cosine distance loss only on the
final hidden states, we use both models without modification. We then add back the teacher layers
to patch the distilled student models to create the interpolated models. We report the perplexity

Preprint

Classification Accuracy (1) Generation Accuracy (1)
* 0.4 *
0.6 i
Layer dropping strategy
§(] . § ' Boomerang distillation
:3') © A :8'] 0.2 of == Naive layer pruning
< < ShortGPT
0.4 LaCo
A Y B --"l-
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)

Model type
i\(Qwen3-4B-Base A Distilled models B Pruned models ® Interpolated models

Figure 7: Boomerang distillation performs significantly better than layer pruning methods. We
compare boomerang distillation to two popular layer pruning approaches, LaCo (Yang et al., 2024)
and ShortGPT (Men et al., 2024). Boomerang distillation has significantly better performance across
all intermediate sizes, especially for generation tasks, where layer pruning quickly degrades to very
low accuracy.

for both models, as they do not exhibit strong out-of-the-box zero-shot performance. We report
pseudo-perplexity for BERT and DistilBERT and perplexity for GPT2 and DistilGPT2 on WikiText.

Results. Figure 6 shows that intermediate models created by patching corresponding teacher
layers from BERT into DistilBERT show a clean interpolation in performance without any training.
We observe that the intermediate GPT2 models show a less clean interpolation compared to the
BERT models, yet they still outperform the naive layer pruning baseline. This result shows that the
boomerang distillation phenomenon occurs even in existing small pretrained language models. To
our knowledge, we are the first to discover zero-shot model size interpolation between these models.

Many existing LLMs distilled from larger teacher models are not readily usable for boomerang
distillation as their setup differs from ours in several ways. For example, Muralidharan et al.
(2024) uses layer pruning along with neuron pruning to initialize the student model, which creates
a mismatch in the dimensions of the hidden state. This prevents us from patching the student
model with teacher weights. Furthermore, existing distillation frameworks often do not use cosine
distance loss in their training (Kim et al., 2024; Gu et al., 2024). We suspect this is because it
increases the memory footprint during training and does not significantly improve the student model
performance. Distilling large-scale LLMs with layer pruning and cosine distance loss, with a large
token budget, for boomerang distillation is a promising direction for future research.

3.5 COMPARISON TO LAYER PRUNING METHODS

We compare boomerang distillation against layer pruning approaches, since they most closely ap-
proximate our setting of creating models with different numbers of layers without additional training.

Setup. We consider two popular layer pruning methods: Layer Collapse (LaCo) (Yang et al.,
2024) and ShortGPT (Men et al., 2024). LaCo identifies blocks of layers with high cosine similarity
between the outputs of the first and last layer in the block, then collapses the later layers in the block
into the first one by adding their difference in parameters. ShortGPT ranks each layer in the model
by its block influence, or cosine distance between the input and output activations of the layer. It then
prunes the layers with the lowest block influence score. For implementation details, see Appendix L.

Results. Figure 7 shows that zero-shot interpolation via boomerang distillation results in signifi-
cantly better classification and generation accuracy than layer pruning methods (for full breakdown
see Appendix Figures 30 and 34). In particular, as observed in the ShortGPT paper (Men et al.,
2024), the generation capabilities for the pruning approaches collapse to near zero after just a
few layers removed, whereas boomerang distillation maintains higher generation accuracy for
much smaller models. Boomerang distillation also smoothly interpolates in classification accuracy
between the distilled student model and the teacher model, whereas the classification accuracy
of all three pruning methods plateaus to near random performance for models of size around 3B
parameters. We note that both of these layer pruning strategies could be used to initialize the

Preprint

student model in a boomerang distillation pipeline and leave exploration of different layer pruning
initializations for boomerang distillation to future work.

3.6 ABLATIONS

We include additional experiments in Appendix E. An ablation on smaller student models, achieved
by a more aggressive layer pruning, shows that boomerang distillation performs well as long as the
distilled student model has non-trivial performance on target tasks. Furthermore, we study the effect
of training tokens on boomerang distillation and find that increasing the student’s training budget
yields interpolated models with improved performance.

4 RELATED WORK

Model Interpolation. Model interpolation is a key technique that combines trained models by
directly interpolating their weights (Singh & Jaggi, 2020; Frankle et al., 2020; Wortsman et al.,
2022). These works focus on combining weights of multiple models with additional training to
improve robustness and out-of-domain generalization (Wortsman et al., 2022; Jin et al., 2023; Dang
et al., 2025), create multi-task models (Ilharco et al., 2023; Yadav et al., 2023; Zhu et al., 2025),
and controllable generation (Gandikota et al., 2024; Kangaslahti & Alvarez-Melis, 2024). All these
works interpolate between model weights of the same size. In contrast, we interpolate between the
student and the teacher model to create interpolated models of different sizes.

Knowledge Distillation. Knowledge distillation is a popular method used to train a smaller
student model to mimic the behavior of the larger teacher model with fewer parameters (Hinton
et al., 2015; Sanh et al., 2019). Knowledge distillation can be used to train a smaller student
model even if the teacher and the student do not share the same architecture. This has enabled
researchers to distill vision models (Oquab et al., 2023), large language models (Team et al., 2024),
and proprietary API-based models (Taori et al., 2023; Gudibande et al., 2024) into smaller models.
Recently, knowledge distillation has been used to distill a pretrained teacher LLM into multiple
smaller student LLMs of varying sizes to create a family of language models, but this approach
incurs significant compute cost (Muralidharan et al., 2024; Sreenivas et al., 2024). In contrast, we
use knowledge distillation to train a single student LLM using a larger teacher LLM and create
interpolated models of fine-grained sizes without requiring any additional training.

Pruning. Model pruning is a widely studied area where the goal is to compress model parameters
by removing redundant parameters to reduce computational requirements while maintaining the
performance of the full model (LeCun et al., 1989; Han et al., 2015; Sun et al., 2024). Several
techniques have been proposed to prune model parameters. These include layer dropping (Men
et al., 2024; Chen et al., 2025), neuron pruning (Ma et al., 2023), SVD-based pruning (Yuan et al.,
2023; Lin et al., 2024; Wang et al., 2025), and more (Cheng et al., 2024). They often require
training the pruned model over an auxiliary dataset to recover the initial performance (Xia et al.,
2024). In this work, we initialize a student model by dropping layers from an existing pretrained
large language model and then train it with a knowledge distillation objective.

Dynamic Compute Allocation. Dynamically allocating a variable amount of compute at infer-
ence time based on task complexity is critical for today’s intelligent systems (Damani et al., 2024).
Several techniques, such as early exiting (Schuster et al., 2022; Elhoushi et al., 2024), test-time
scaling (Snell et al., 2024; Muennighoff et al., 2025), and compute-adaptive embeddings (Kusupati
et al., 2022; Lee et al., 2024), have been proposed for dynamic compute allocation. In our work,
we focus on dynamically creating new models by interpolating model sizes that require different
amounts of compute during inference. Existing approaches that produce models of variable
sizes often require explicit training (Kusupati et al., 2022; Lee et al., 2024), which is expensive
and time-consuming when many fine-grained model variants are needed. In contrast, we create
fine-grained interpolated models without any additional training with only one student model.

5 CONCLUSION

We identify boomerang distillation, a novel phenomenon in large language models. We show that
boomerang distillation can be used to create a family of models that smoothly interpolate in size
and performance between a given student and teacher model, without any additional training. In
our experiments, we show that boomerang distillation occurs when training a student model with

Preprint

knowledge distillation from a teacher model. Crucially, we identify that the student has to be ini-
tialized from the teacher with layer pruning. Furthermore, we observe that boomerang distillation
occurs even in existing open-source models such as DistilBERT and DistilGPT2 (Sanh et al., 2019).
Our interpolated models consistently match or even outperform models of the same size directly
trained with knowledge distillation, and exhibit superior downstream performance compared to ex-
isting pruning approaches. In conclusion, we provide a simple recipe for creating fine-grained model
families from a single student-teacher pair, which significantly reduces training time and cost.

ACKNOWLEDGMENTS

We thank Yonatan Belinkov, Bingbin Liu, Lyndon Lam, Chloe Su, and the members of the ML
Foundations group and the Kempner Institute for their thoughtful feedback on the manuscript. David
Alvarez-Melis, Sara Kangaslahti, Jonathan Geuter, and Nihal V. Nayak acknowledge support from
the National Science Foundation Graduate Research Fellowship (Grant No. DGE 2140743), the
Kempner Institute, FAS Dean’s Competitive Fund for Promising Scholarship, Aramont Fellowship
Fund, and the NSF AI-SDM Institute (Grant No. 1IS-2229881). Francesco Locatello’s contribution
to this research was funded in part by the Austrian Science Fund (FWF) 10.55776/COE12.

ETHICS STATEMENT

Interpolated models created using boomerang distillation may inherit or amplify the biases of the
pretrained teacher model. Before deploying, we recommend comprehensively evaluating the models
on the target tasks to identify potential biases. To further mitigate any residual biases, we suggest
training the model to follow instructions and carry out additional safety training.

REFERENCES

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
language models across training and scaling. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 2397-2430. PMLR, 2023. URL https://
proceedings.mlr.press/v202/biderman23a.html.

Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 7432-7439. AAAI Press, 2020.
URL https://aaai.org/ojs/index.php/AAAI/article/view/6239.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
redundant layers to compress large language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
IC5RJVROMp.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Trans. Pattern Anal. Mach. Intell.,
46(12):10558-10578,2024. ISSN 0162-8828. URL https://doi.org/10.1109/TPAMI.
2024.3447085.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924-2936, Minneapolis, Min-

10

https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://openreview.net/forum?id=IC5RJvRoMp
https://openreview.net/forum?id=IC5RJvRoMp
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/TPAMI.2024.3447085

Preprint

nesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic ca-
pabilities. ArXiv preprint, abs/2507.06261, 2025. URL https://arxiv.org/abs/2507.
06261.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard
to think: Input-adaptive allocation of Im computation. ArXiv preprint, abs/2410.04707, 2024.
URL https://arxiv.org/abs/2410.04707.

Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter, and Aditi Raghunathan. Weight ensem-
bling improves reasoning in language models. ArXiv preprint, abs/2504.10478, 2025. URL
https://arxiv.org/abs/2504.10478.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling
early exit inference and self-speculative decoding. ArXiv preprint, abs/2404.16710, 2024. URL
https://arxiv.org/abs/2404.16710.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 3259-3269. PMLR, 2020. URL http://proceedings.
mlr.press/v119/frankle20a.html.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128-135, 1999.

Rohit Gandikota, Joanna Materzynska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
sliders: Lora adaptors for precise control in diffusion models. In European Conference on Com-
puter Vision, pp. 172—-188. Springer, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2021. URL https://arxiv.org/
abs/2101.00027.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 2023. URL https://zenodo.org/records/
10256836.

11

https://aclanthology.org/N19-1300
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2410.04707
https://arxiv.org/abs/2504.10478
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2404.16710
http://proceedings.mlr.press/v119/frankle20a.html
http://proceedings.mlr.press/v119/frankle20a.html
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

Preprint

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. ArXiv preprint, abs/2407.21783, 2024. URL https://arxiv.org/abs/2407.
21783.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
unreasonable ineffectiveness of the deeper layers, 2024. URL https://arxiv.org/abs/
2403.17887.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=5h0gf7IBZZ.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary language models. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
Kz3yckpCNb.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural network. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada, pp. 1135-1143,2015. URL https://proceedings.neurips.cc/paper/
2015/hash/aeleb3eed39d2bcef4622b2499a05fe6-Abstract.html.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. ArXiv
preprint, abs/1503.02531, 2015. URL https://arxiv.org/abs/1503.02531.

Chip Huyen. Designing machine learning systems. >’ O’Reilly Media, Inc.”, 2022.

Gabriel Ilharco, Marco Tilio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/pdf?id=6t0Kwf8—jr.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. ArXiv preprint, abs/2310.06825, 2023. URL https://arxiv.org/abs/2310.
06825.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=FCnohuR6AnM.

Sara Kangaslahti and David Alvarez-Melis. Continuous language model interpolation for dy-
namic and controllable text generation. ArXiv preprint, abs/2404.07117, 2024. URL https:
//arxiv.org/abs/2404.07117.

Apoorv Khandelwal, Tian Yun, Nihal V. Nayak, Jack Merullo, Stephen Bach, Chen Sun, and Ellie
Pavlick. $100k or 100 days: Trade-offs when pre-training with academic resources. In Second
Conference on Language Modeling, 2025. URL https://openreview.net/forum?id=
EFxC34XbDh.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=Kz3yckpCN5
https://openreview.net/forum?id=Kz3yckpCN5
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/1503.02531
https://openreview.net/pdf?id=6t0Kwf8-jrj
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://openreview.net/pdf?id=FCnohuR6AnM
https://arxiv.org/abs/2404.07117
https://arxiv.org/abs/2404.07117
https://openreview.net/forum?id=EFxC34XbDh
https://openreview.net/forum?id=EFxC34XbDh

Preprint

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: Depth pruning for large language models with comparison
of retraining methods. ArXiv preprint, abs/2402.02834, 2024. URL https://arxiv.org/
abs/2402.02834.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521-3526, 2017.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek
Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham M. Kakade, Prateek Jain, and
Ali Farhadi. Matryoshka representation learning. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
c32319f4868da7613d78a£9993100e42-Abstract-Conference.html.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian
Riedel (eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pp. 785-794, Copenhagen, Denmark, 2017. Association for Computational Linguis-
tics. doi: 10.18653/v1/D17-1082. URL https://aclanthology.org/D17-1082.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large
language models. ArXiv preprint, abs/2403.20327, 2024. URL https://arxiv.org/abs/
2403.20327.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen,
Hongxia Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model
compression. ArXiv preprint, abs/2408.09632, 2024. URL https://arxiv.org/abs/
2408.09632.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural prun-
ing of large language models. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
44956951349095£74492a5471128a7e0-Abstract-Conference.html.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
ArXiv preprint, abs/2403.03853, 2024. URL https://arxiv.org/abs/2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor con-
duct electricity? a new dataset for open book question answering. In Ellen Riloff, David
Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381-2391, Brussels, Belgium,
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL https:
//aclanthology.org/D18-1260.

13

https://arxiv.org/abs/2402.02834
https://arxiv.org/abs/2402.02834
http://papers.nips.cc/paper_files/paper/2022/hash/c32319f4868da7613d78af9993100e42-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c32319f4868da7613d78af9993100e42-Abstract-Conference.html
https://aclanthology.org/D17-1082
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2408.09632
https://arxiv.org/abs/2408.09632
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
https://arxiv.org/abs/2403.03853
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/D18-1260
https://aclanthology.org/D18-1260

Preprint

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. ArXiv preprint, abs/2501.19393, 2025. URL https://arxiv.org/abs/2501.
19393.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024,2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
4822991365¢c962105b1b95b1107d30e5-Abstract-Conference.html.

Avanika Narayan, Dan Biderman, Sabri Eyuboglu, Avner May, Scott Linderman, James Zou, and
Christopher Re. Cost-efficient collaboration between on-device and cloud language models. In
Forty-second International Conference on Machine Learning, 2025.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin EI-Nouby, et al. Dinov2: Learning
robust visual features without supervision. ArXiv preprint, abs/2304.07193, 2023. URL https:
//arxiv.org/abs/2304.07193.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurlPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8024-8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7£92f2bfa9f7012727740-Abstract.html.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAl, 2019. URL https:
//cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An ad-
versarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8732-8740. AAAI Press, 2020.
URL https://aaai.org/ojs/index.php/AAAI/article/view/6399.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. ArXiv preprint, abs/1910.01108, 2019. URL https:
//arxiv.org/abs/1910.01108.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay,
and Donald Metzler. Confident adaptive language modeling. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurlPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
6fac9e3l6adae75ea244ddcefl982c71-Abstract-Conference.html.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,

14

https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
http://papers.nips.cc/paper_files/paper/2024/hash/4822991365c962105b1b95b1107d30e5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/4822991365c962105b1b95b1107d30e5-Abstract-Conference.html
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/6399
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html

Preprint

virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
fb2697869f56484404c8ceee2985b01d-Abstract.html.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. ArXiv preprint, abs/2408.03314, 2024. URL
https://arxiv.org/abs/2408.03314.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski,
Ameya Sunil Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe
Diao, et al. Llm pruning and distillation in practice: The minitron approach. ArXiv preprint,
abs/2408.11796, 2024. URL https://arxiv.org/abs/2408.11796.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning ap-
proach for large language models. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=PxoFut 3dWW.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. ArXiv preprint, abs/2408.00118, 2024.
URL https://arxiv.org/abs/2408.00118.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
rJ4km2R5t 7.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular value
decomposition for large language model compression. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
LNYIUouhdt.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s trans-
formers: State-of-the-art natural language processing. ArXiv preprint, abs/1910.03771, 2019.
URL https://arxiv.org/abs/1910.03771.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith,
and Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models im-
proves accuracy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvdri, Gang Niu, and Sivan Sabato (eds.), International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 23965-23998. PMLR, 2022. URL https:
//proceedings.mlr.press/v162/wortsman22a.html.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental impli-
cations, challenges and opportunities. Proceedings of machine learning and systems, 4:795-813,
2022.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=09i0daeOzp.

15

https://proceedings.neurips.cc/paper/2020/hash/fb2697869f56484404c8ceee2985b01d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb2697869f56484404c8ceee2985b01d-Abstract.html
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.11796
https://openreview.net/forum?id=PxoFut3dWW
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2408.00118
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=LNYIUouhdt
https://openreview.net/forum?id=LNYIUouhdt
https://arxiv.org/abs/1910.03771
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://openreview.net/forum?id=09iOdaeOzp

Preprint

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-
merging: Resolving interference when merging models. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1644c9%9af28ab7916874f6£d6228a%bcf-Abstract-Conference.html.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. ArXiv preprint, abs/2505.09388,
2025. URL https://arxiv.org/abs/2505.09388.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
ArXiv preprint, abs/2402.11187,2024. URL https://arxiv.org/abs/2402.11187.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. ArXiv
preprint, abs/2312.05821, 2023. URL https://arxiv.org/abs/2312.05821.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluis Marquez (eds.),
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4791-4800, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1472. URL https://aclanthology.org/P19-1472.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

Didi Zhu, Yibing Song, Tao Shen, Ziyu Zhao, Jinluan Yang, Min Zhang, and Chao Wu. Rem-
edy: Recipe merging dynamics in large vision-language models. In The Thirteenth International
Conference on Learning Representations, 2025.

16

http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2402.11187
https://arxiv.org/abs/2312.05821
https://aclanthology.org/P19-1472
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

Preprint

CONTENTS

1 Introduction

2 Boomerang Distillation: Knowledge Distillation with Student Patching
2.1 Student Initialization L
2.2 Knowledge Distillation
2.3 Student Patching

3 Experiments
3.1 The Boomerang Distillation Phenomenon
3.2 How Good is Boomerang Distillation?
3.3 Effect of Knowledge Distillation
3.4 Zero-shot Model Size Interpolation with Existing Off-the-shelf Models

3.5 Comparison to Layer Pruning Methods

W W W N

3.6 Ablations e e

Related work

Conclusion

Limitations

Boomerang Distillation Implementation

Hyperparameters

Datasets

Additional ablation experiments

E.1 Ablating Distilled Model Sizes
E.2 Impactof Training Tokens

The Boomerang Distillation Phenomenon with Qwen, Pythia, and Llama Models

F1 Qwen3-8B-Base. e e
F2 Pythia-2.8B and Pythia-69B
F3 Llama-3.2-3B e e e e e

Pythia-2.8B Full Results

Llama-3.2-3B Full Results

Llama-3.2-3B Cosine Similarity Analysis

17

O 0 9 N »n B~ A

19

19

20

20

20
20
21

21
22
22
23

24

24

26

Preprint

J Student Model Size Ablation Cosine Similarity Analysis

K Additional evaluation results

K.l Perplexity o o e e e e e
K.2 Classification Tasks
K.3 Generation Tasks e

L Pruning method details

M Use of Large Language Models

18

28

28
28
30
30

30

31

Preprint

A LIMITATIONS

We briefly discuss the limitations of boomerang distillation.

Boomerang distillation requires a distilled student LLM, which can be computationally expensive
to train. As discussed in Section 3.1, we show that a distilled student LLM trained is crucial for
boomerang distillation. While we get interpolated models of intermediate sizes without any addi-
tional training, training the student LLM itself requires a significant amount of compute.

Our computational resources limit the model size and number of distillation tokens in our experi-
ments. Scaling this approach to larger models with a greater token budget is an exciting avenue for
future work.

Boomerang distillation could also benefit from a more sophisticated student patching order. In
our work, we consider two approaches to patching the student model: either starting from the first
layers or the last layers. However, in some cases, this naive patching order can lead to instability
in performance in the interpolated models (Appendix I). Patching the student models with teacher
layers guided by the similarity of the layers could help mitigate the instability of the interpolated
models.

B BOOMERANG DISTILLATION IMPLEMENTATION

For all the experiments in Section 3, we primarily consider Qwen3-4B-Base (Yang et al., 2025) as a
teacher model. We follow the same student initialization and training setup for additional models in
Appendix F. All the implementation was done using PyTorch (Paszke et al., 2019) and HuggingFace
transformers (Wolf et al., 2019).

Teacher Model Student Model
Name Inf. params Train. params Inf. params
Qwen3-4B-Base 4.4B 2.3B 2.7B
Qwen3-8B-Base 8.8B 4.9B 5.6B
Pythia-2.8B 2.8B 1.6B 1.6B
Pythia-6.9B 6.9B 3.8B 3.8B
Llama-3.2-3B 3.6B 1.9B 2.3B

Table 1: The sizes of the initialized student models after pruning the layers from the teacher
model. We note that the Pythia models do not employ weight tying, so their train and inference pa-
rameters are equivalent. On the other hand, the Qwen and Llama models weight tie their embedding
layers and LM heads, so their inference-time parameters are higher than their training parameters.
This is because both the embedding layer and LM head are used during inference.

Student initialization. For convenience and increased granularity, in our experiments, similar to
Sanh et al. (2019), we drop every other layer from the teacher model to initialize the student model.
However, our work is not limited to this setting and could benefit from informed initialization
strategies (Men et al., 2024). We also keep the last teacher layer, since doing so has been shown
to be essential when pruning (Gromov et al., 2024). Table | summarizes the trainable and inference
parameters of the teacher and the student models. In Qwen and Llama models, the number of train-
able and inference-time parameters differs because the embedding layer is reused as the language
modeling head during training. In all experiments, we report the inference-time parameters as the
parameter count.

Training. We distill the student model on 2.1B tokens of the deduplicated Pile (Gao et al., 2021)
using the overall loss (Eq. 1). We train the models on four NVIDIA H100 GPUs or four H200
GPUs, depending on their availability. Based on the size of the student model, the total training time
typically ranged from 12 to 72 hours. Unless stated otherwise, we use the same hyperparameters to
train all the student models. For full training hyperparameters, see Appendix C.

19

Preprint

Student patching. We perform student patching by replacing each student layer with its corre-
sponding block of teacher layers. For all models except the Llama models, we patch the student
layers starting backwards from the M-th layer and progressively patch more layers until all the
layers are replaced with the teacher blocks. For the Llama models, we patch starting from the first
layer and progressively patch until the M -th layer (see Appendix I for more details). As mentioned
in Section 2.3, depending on the order of patching, we use the embedding and language modeling
differently. In Qwen and Pythia models, we use the embedding layer from the distilled student
model and the language modeling head from the teacher model. In Llama, we use the embedding
layer from the teacher model and the language modeling head from the distilled teacher model.

C HYPERPARAMETERS

Hyperparameters Values
Learning rate 3e-4
Learning rate scheduler cosine
Warmup ratio 0.01
Optimizer AdamW
Adam betas (0.9, 0.95)
Adam epsilon le-8
Weight decay 0.1
Max. gradient norm 1.0
Number of training steps 500
Max. sequence length 2048
Effective batch size 2048
Mixed precision bf16
KLDiv weight Ak, 0.1

Cosine distance weight Acos 2.0/ (M+1)

Table 2: Hyperparameters used to train the student model. We choose the training hyperparam-
eters to align with the values used in Pythia training (Biderman et al., 2023) and set the KLDiv and
cosine distance weights such that the cross entropy, KLDiv, and cosine distance loss are approxi-
mately equal in magnitude at the beginning of training.

Table 2 lists all the hyperparameters used to train the student model.

D DATASETS

We utilize the same evaluation datasets throughout the paper. We use 1m-
evaluation-harness (Gao et al, 2023) to evaluate classification accuracy, generation
exact match accuracy, and perplexity. We compute classification accuracy on 10 tasks: ARC-easy
and ARC-challenge (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al.,
2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi
et al., 2020), RACE (Lai et al., 2017), MMLU (Hendrycks et al., 2021a), and RTE (Wang et al.,
2019). For generation, we report exact match accuracy on 3 tasks: GSM8K (Cobbe et al., 2021),
IFEval (Zhou et al., 2023), and MATH (Hendrycks et al., 2021b). We also compute perplexity on
the WikiText dataset (Merity et al., 2017) for all experiments and report it in Appendix K.1.

E ADDITIONAL ABLATION EXPERIMENTS

E.1 ABLATING DISTILLED MODEL SIZES
In this experiment, we test what size of distilled student model is best for boomerang distillation.

Ideally, the student model should be as small as possible while maintaining interpolation perfor-
mance.

20

Preprint

Setup. We train four student models initialized by keeping every other layer, every third layer,
every fourth layer, and every fifth layer of the teacher model.

Classification Accuracy (1)

Generation Accuracy (1)

ﬁ? 0.4
0.6 v ~d
0.3 o« Layer initialization strategy
§ § Every 2nd layer
€05 e
§ § 0.2 .(Every 3rd layer
< < Every 4th layer
| Every 5th layer
0.4 0.1 /
A K .y
A L leg e
2 3 4 2 3 4
Parameter Count (Billions) Parameter Count (Billions)
Model type

ii(Qwen3-4B-Base A Distilled models @ Interpolated models

Figure 8: Boomerang distillation occurs for smaller student models with non-trivial perfor-
mance. We compare the standard every 2nd layer initialization to models where we keep every 3rd,
4th, and 5th teacher layer when initializing the student. Every 3rd layer initialization produces sim-
ilar interpolation behavior to every 2nd layer, but the smaller models do not interpolate smoothly,
likely due to low student model performance and gaps in cosine similarity (see Appendix J).

Results. In Figure 8, we find that student models initialized with every 2nd and every 3rd
layer have similar interpolation performance, while the two smallest models do not have smooth
interpolation behavior, which suggests that boomerang distillation works well when the student
model shows non-trivial performance. We show in Appendix J that the cosine similarity between
the output activations of the patched teacher block and the student layer it is replacing is correlated
with interpolation performance. For instance, the drop in accuracy in every 4th layer after 3B
parameters is primarily due to low cosine similarity between the patched teacher block and the
student layer. This suggests that patching layers with high cosine similarity is a possible heuristic
to consider for model interpolation to prevent a significant drop in performance.

E.2 IMPACT OF TRAINING TOKENS

In this experiment, we study the impact of training tokens and the performance of the interpolated
models.

Setup. Following the same experimental setup from Section B, we train student models on differ-
ent token budgets: 0.5B, 1B, 1.5B, 2B, 2.5B, and 3.1B. Depending on the token budget, we adjust
the number of training steps and train the model for one epoch.

Results. We find that training the student models with more tokens results in better student models,
which in turn creates better interpolated models (Figure 9). We also observe that if the distilled
student model shows trivial performance (when trained with 0.5B tokens), the interpolated models
also show trivial performance up to 4B parameters. In summary, for boomerang distillation to be
effective, the student needs to show non-trivial performance.

F THE BOOMERANG DISTILLATION PHENOMENON WITH QWEN, PYTHIA,
AND LLAMA MODELS

In this section, we show boomerang distillation with Qwen3-8B-Base, Pythia-2.8B, Pythia-6.9B,
and Llama-3.2-3B.

21

Preprint

Classification Accuracy (1) Generation Accuracy (1)
0.4
0.6 Number of distillation tokens

0.3 0.52 B Tokens

oy o 1.05 B Tokens

® 0.5 I

3 302 1.57 B Tokens

< < 2.1 B Tokens

=262 B Tokens
3.15 B Tokens

=

s
o
—_

3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)

Model type
Y% Qwen3-4B-Base A Distilled models @ Interpolated models

Figure 9: Increased training token budget produces better interpolated models. Distilling the
student model on more tokens results in distilled models with higher performance, which create
better interpolated models. Distilled student models with trivial performance (0.52B tokens) do
not have smooth interpolation behavior, indicating that non-trivial student model performance is
necessary for boomerang distillation to occur.

Classification Accuracy (1) Generation Accuracy (1)
0.4
0.6
Layer dropping strategy
o) oy Boomerang distillation
05 e . .
§ A § 0.2 === Naive layer pruning
< < Interpolation from randomly
0.4 initialized distilled model
6 7 8 6 7 8
Parameter Count (Billions) Parameter Count (Billions)
Model type

i\(Qwen3-8B-Base A Distilled models I Pruned models @ Interpolated models

Figure 10: Boomerang distillation with Qwen 8B creates models with smoothly interpolated
size and performance.

F.1 QWEN3-8B-BASE

Figure 10 shows boomerang distillation occurs in the Qwen3-8B-Base model. Similar to Qwen3-4B-
Base (§3.1), we observe a clear trend in performance as the size of the interpolated models increases.
We also note that the student model created with Qwen3-8B-Base is approximately 5.6B parameters
in size, which is close to the pretrained Qwen-3-4B-Base model but performs significantly worse.
We suspect that the corpus used to pretrain Qwen is of a higher quality and trained on significantly
more tokens compared to the distilled student model, which leads to improved out-of-the-box per-
formance. In such cases, for a given size, we recommend choosing the model interpolated from the
closest pretrained model.

F.2 PYTHIA-2.8B AND PYTHIA-6.9B

Figures 11 and 12 show boomerang distillation with Pythia 2.8B and Pythia 6.9B models. In both
cases, we see that interpolated shows improved performance in classification accuracy, but their per-
formance on generation tasks is nearly 0%. We also observe that the performance of the pretrained
models is close to 0%, which suggests that boomerang distillation may not improve the performance
of the interpolated models beyond the performance of the pretrained models.

22

Preprint

Classification Accuracy (1) Generation Accuracy (1)
0.06 A
0.45
Layer dropping strategy
g | g0404 A Boomerang distillation
g 0.40 g === Naive layer pruning
< <02 Interpolation from randomly
) initialized distilled model
0.35 N
z 0.00
2.0 2.5 2.0 2.5
Parameter Count (Billions) Parameter Count (Billions)

Model type
Y Pythia-2.8B A Distilled models Ml Pruned models ~ @ Interpolated models

Figure 11: Boomerang distillation with Pythia 2.8B creates models with smoothly interpolated
size and performance.

Classification Accuracy (1) Generation Accuracy (1)
0.06 A
0.45 Layer dropping strategy
§ A § 0.04 zo‘omeirang dIStI‘”atIOn
3040 3 A === Naive layer pruning
< < Interpolation from randomly
0.02 initialized distilled model
0.35
u..".‘l’) _,.,I’"J
o 0.00
4 5 6 7 4 5 6 7
Parameter Count (Billions) Parameter Count (Billions)
Model type

Dke Pythia-6.9B A Distilled models B Pruned models @ |Interpolated models

Figure 12: Boomerang distillation with Pythia 6.9B creates models with smoothly interpolated
size and performance.

Classification Accuracy (1) 015 Generation Accuracy (1)
15
0.5 Layer dropping strategy

§ #?0'1[] Boomerang distillation

:3: A E === Naive layer pruning

< 0.4 < A Interpolation from randomly

0.05 initialized distilled model

2.5 3.0 3.5 2.5 3.0 3.5
Parameter Count (Billions) Parameter Count (Billions)

Model type
* Llama-3.2-3B A Distilled models B Pruned models @ Interpolated models

Figure 13: Boomerang distillation with Llama-3.2-3B creates models with smoothly interpo-
lated size and performance.

F.3 LLAMA-3.2-3B

Figure 13 shows the boomerang distillation phenomenon in Llama-3.2-3B. We modify the initial-
ization and student patching order setup due to the behavior of the first base model layer to ensure
that first-layer information is preserved (see Appendix I for details). We find that boomerang distil-
lation with Llama-3.2-3B as a base model produces interpolated models with smoothly interpolated
performance across classification and generation tasks. In contrast, naive layer pruning and inter-
polation using a randomly initialized distilled student model do not recover smoothly interpolated
models.

23

Preprint

G PyTHIA-2.8B FULL RESULTS

Classification Accuracy (1)

Generation Accuracy (1)

e
0.46 A A
A
- A -0 e A A A Boomerang distillation
3044 A 20.06 comera .
¢ e A S A Distilled intermediate
3 A g A models
0w aA a B < Y Pythia-2.8B
X 0.05
0.40
2.0 2.5 2.0 2.5
Parameter Count (Billions) Parameter Count (Billions)
Model type

* Pretrained models A Distilled models @ Interpolated models

Figure 14: Interpolated models produced using boomerang distillation and Pythia-2.8B have
comparable performance to pretrained and naively distilled models.

Comparing boomerang distillation to standard knowledge distillation. Figure 14 shows that
interpolated models created using boomerang distillation for Pythia-2.8B have comparable perfor-
mance to the intermediate models trained using standard knowledge distillation. Unlike the Qwen
models, the models trained with standard distillation perform better than interpolated models across
all sizes, suggesting that Qwen models are trained on a much higher quality corpus, and training
them on The Pile drops their performance.

Wikitext Perplexity (1) Classification Accuracy (1) Generation Accuracy (1)

| A
& L

10 0.450 0.0614 05 terms
Zz o) z A ..i‘f — Lc
3 e o e Lop + Lia
30 5042 ~ &Y g Ras s £
¢ ‘ = 2005 , y Lon+ ¥, £0,
& 29 < A 4 <0.05 /8 g cet)

20 = 0.400 4 s Leg+ L+ Y, Leos

N e
bA¢ 0.04_®
2.0 2.5 2.0 2.5 2.0 2.5
Parameter Count (Billions) Parameter Count (Billions) Parameter Count (Billions)
Model type
* Pythia-2.8B A Distilled models @ Interpolated models

Figure 15: Per-layer loss yields stable and smoother interpolation performance in Pythia-2.8B.

Effect of knowledge distillation. Figure 15 shows that student models trained with a cross entropy
and an alignment loss create interpolated models with lower perplexity. We also observe that the
interpolated models incorporating cross entropy and alignment losses show meaningful differences
in classification accuracy compared to models trained without them, particularly at smaller model
sizes. Finally, we see that the interpolated models show trivial performance on generation tasks
since the teacher performs poorly on those tasks.

Comparison to layer pruning methods Figure 16 shows that boomerang distillation and layer
pruning exhibit similar performance on the classification tasks. While boomerang distillation shows
stronger performance at smaller model sizes, we see that LaCo and ShortGPT show stronger perfor-
mance at larger model sizes. Since the pretrained teacher model itself does not show strong perfor-
mance, we suspect the patching order makes a difference in performance. Nevertheless, boomerang
distillation is competitive with existing approaches in the layer pruning.

H LrLaMA-3.2-3B FULL RESULTS

Comparing boomerang distillation to standard knowledge distillation. Figure 17 shows that
boomerang distillation creates interpolated models that show comparable performance to the models

24

Preprint

Classification Accuracy (1)

Generation Accuracy (1)

A
0.45 0.06
’* Layer dropping strategy
§ X Q(J.(JB Boomerang distillation
LS) 0.40 LSJ Naive layer pruning
O ")
< <0 ShortGPT
LaCo
0.35
0.03] g e
2.0 2.5 2.0 2.5
Parameter Count (Billions) Parameter Count (Billions)
Model type
Vg Pythia-2.8B A Distilled models B Pruned models @ Interpolated models

Figure 16: Boomerang distillation with Pythia-2.8B performs similarly to depth pruning meth-

ods.

Classification Accuracy (1)

Generation Accuracy (1)

77|
0.55 *

A 7\ A Boomerang distillation
oy oy Distilled intermediate
g « S0.10 A A
30.50 g A A, SO‘::T"Z 5
£ < A ythia-2.8

A4 A , % ¥¢ Llama-3.2-38
0.45 A 0.05 A
X
2.5 3.0 3.5 2.5 3.0 3.5
Parameter Count (Billions) Parameter Count (Billions)
Model type

A Distilled models ~ @ Interpolated models

* Pretrained models

Figure 17: Interpolated models produced using boomerang distillation and Llama-3.2-3B have
comparable performance to pretrained and naively distilled models.

trained with standard knowledge distillation, and even outperforms them at larger sizes. Similar to
Qwen, since we do not have access to the Llama’s pretraining corpus, we find that distilling on The
Pile leads to a performance drop at larger sizes. On the other hand, boomerang distillation retains
the benefits of pretraining and outperforms standard distillation in some cases.

Generation Accuracy (1)

Wikitext Perplexity () Classification Accuracy (1)

J< 015
20{ AN -
é \ 05 odi "Aﬁ? Loss terms
z . g //V 7 ’ — Lo
3 a. €05 g
4;_15 \,\\‘ 5 0.50 H 0.10 /’ Lcg + Lk, .
& \\‘ < ~’ < ’ Log+ Y Leos
Ny 0.45 4 Lep+ L+ Y, L4,
10 Y 0.051 g =S
| 4
2.5 3.0 3.5 2.5 3.0 3.5 2.5 3.0 3.5
Parameter Count (Billions) Parameter Count (Billions) Parameter Count (Billions)
Model type
i\f Llama-3.2-3B A Distilled models @ Interpolated models

Figure 18: Per-layer loss yields stable and smoother interpolation performance in Llama-3.2-
3B.

Effect of knowledge distillation. Figure 18 shows that training with alignment loss, i.e., cosine
distance loss, creates interpolated models with lower perplexity across most intermediate sizes. The
classification accuracy is also slightly higher, especially for models with around 2.5-3B inference
parameters. Similarly to the Qwen models, we see that training without alignment loss degrades
generation performance at high parameter counts, likely due to the importance of the last layers.

25

Preprint

Classification Accuracy (1) Generation Accuracy (1)

¥ Layer dropping strategy

=}
5t
i

Boomerang distillation

”_ === Naive layer pruning

b A [ShortGPT
i L.
0.05 aco
¢ e

- —

Accuracy
Accuracy

=
=

2.5 3.0 3.5 2.5 3.0 3.5
Parameter Count (Billions) Parameter Count (Billions)

Model type
7,/\(Llama-3.2-3B A Distilled models I Pruned models @ |Interpolated models

Figure 19: Boomerang distillation with Llama-3.2-3B performs significantly better than depth
pruning methods.

Comparison to layer pruning methods. Figure 19 shows that boomerang distillation outperforms
layer pruning approaches at all sizes. We observe that the gap in classification accuracy is initially
quite high, but around 3.2B, LaCo recovers performance and performs competitively to boomerang
distillation. These results suggest that the interpolated models created using boomerang distillation
perform significantly better than existing approaches, but they perform similarly to LaCo as the
model size approaches that of the pretrained teacher model.

I LLAMA-3.2-3B COSINE SIMILARITY ANALYSIS

In this section, we analyze the per-layer activation cosine similarity between the output activations
of all pairs of distilled and base model layers. We compute the activations on a calibration set
consisting of 128 samples from The Pile (Gao et al., 2021) and report the mean cosine similarity
across all tokens in each sample. We find that per-layer cosine similarity explains when boomerang
distillation is noisy or has poor interpolation performance. Our results indicate that the best practices
when using boomerang distillation are to (1) patch student layers with low cosine similarity first and
(2) ensure that consecutive layers with low cosine similarity are not pruned when initializing the
student model.

Standard initialization. Figure 20 shows the cosine similarity analysis for the distilled model cre-
ated by initializing the student model from Llama-3.2-3B by pruning every other layer and keeping
the last two layers:

05 = (67,057,650 ... 00N N1 oN) gD)

Figure 20 demonstrates that the output activations of the first layer in the distilled student model
have high cosine similarity to the output activations of the first layer in the teacher model, but have
low cosine similarity to the outputs of the second layer in the teacher. As a result, the remaining
layers in the distilled student do not have high cosine similarity to their corresponding base model
layers until the last two layers of the student model. This means that the model does not recover
smoothly interpolated performance when patching layers of the student model starting from the last
layers of the model (Figure 21 green line). In Figure 21 (blue line), we show that this issue can
be mitigated by patching from the first layers of the model. Thus, beginning the student patching
process with layers with low cosine similarity to their corresponding teacher layers provides a way
to improve interpolation performance.

Preserving first-layer information. In Figure 22, we consider an alternative student initialization
to solve the misalignment in the first student layer (Figure 20), where we instead keep the first two
teacher layers and alternate layers for the remaining initialization:

s = (02,000,076, 05N 6™ 62) 3)

We choose this initialization because we hypothesize that given the low cosine similarity between
the first and second layers in the model (Figure 20), combining the first two base model layers into

26

Preprint

=)

() -{LeZd(0.07//0.08 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.08 0.08 0.09 0.10 0.10 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.06

0.65 [lvrg 0.11”0.12 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.11 0.11 0.12 0.13 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.13 0.11 0.05

=
o0

40.50(0.07 0.10 0.11 0.15”0.15 0.14 0.13 0.13 0.13 0.12 0.13 0.14 0.15 0.16 0.16 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.16 0.15 0.15 0.13 0.06

40.40 0.06 0.09 0.11 0.13 0.14{/0.17|{0.17|{0.16 0.16 0.15 0.16 0.16 0.17 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.18 0.17 0.16 0.14 0.07

0.17 0.18 0.18 0.19 0.20 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.20 0.20 0.19 0.18 0.16 0.07

40.32 0.06 0.08 0.10 0.12 0.13 0.15 0.16 0.17 0.18 0.20{0.20 0.21 0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.22 0.20 0.20 0.17 0.08

40.35 0.06 0.09 0.10 0.12 0.13 0.16 0.16

<
=

40.31 0.06 0.08 0.09 0.11 0.12 0.13 0.15 0.16 0.17 0.18 0.20|0. .24 0.25 0.26 0.26 0.26 0.27 0.27 0.27 0.27 0.26 0.25 0.24 0.21 0.11

40.28 0.06 0.07 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.15 0.18 0.20 0.22 0.30 0.31 0.31 0.33 0.33 0.33 0.33 0.33 0.32 0.31 0.28 0.16

40.24 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.11 0.12 0.13 0.14 0.17 0.19 0.24 0.26 0.32 0.33,

40.26 0.05 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.13 0.14 0.16 0.18 0.20 0.26 0.28|

0.35 0.37 0.38 0.38 0.38 0.39 0.37 0.36 0.33 0.20

=
=

0.40((0.41 0.42 0.42 0.43 0.42 0.41 0.37 0.23

40.21 0.04 0.05 0.06 0.07 0.08 0.09 0.09 0.10 0.11 0.11 0.12 0.15 0.16 0.21 0.24 0.29 0.31 0.35 0.39|(0. 0.46 0.48 0.47 0.46 0.42 0.27

—
= O © 00~ O U k= W N =

Auejiwig suiso) uoleAIdY

40.20 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.09 0.10 0.10 0.12 0.14 0.15 0.20 0.23 0.27 0.29 0.33 0.37 0.43 0.45 N 0.50 0.49 0.46 0.29

N

» 12-0.18 0.04 0.05 0.06 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.12 0.14 0.18 0.21 0.25 0.27 0.30 0.34 0.40 0.42 0.46 0.48

Distilled Student Model Layer Number

40.16 0.04 0.05 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.11 0.12 0.15 0.18 0.21 0.23 0.26 0.29 0.34 0.36 0.40 0.42 0.46 0

—_
w

40.06 -0.00-0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.05 0.06 0.09 0.09 0.11 0.12 0.15 0.16 0.18 0.19 0.22 0.24 0.3

0123456 78 910111213141516 17 1819 20 21 22 23 24 25 26 27
Base Model (Llama-3.2-3B) Layer Number

—
=

Student to teacher mapping
[Copied layer [Aligned layer

Figure 20: Per-layer cosine similarity between the output activations of the distilled student
model and the teacher model, Llama 3.2 3B. The first student and teacher layer exhibit high
cosine similarity, but all student layers except for the last one have low cosine similarity to their
corresponding teacher block (layer 05?) shown in pink and layer 0¥ 171 shown in yellow). As a
result, patching the student model starting from the last layer does not smoothly recover the interpo-

lated performance (Figure 21).

Classification Accuracy (1) Generation Accuracy (1)
05 i Initialization strategy, Patching order
> 30.10 / Every other + last 2 layers, patch first k layers
3 A f
g A é [Every other + last 2 layers, patch last k layers
< 04 < A / First 2 layers + every other, patch first k layers
0 W‘ First 2 layers + every other, patch last k layers
0.05 7;
A -‘/W
2.5 3.0 3.5 2.5 3.0 3.5
Parameter Count (Billions) Parameter Count (Billions)

Model type
Y% Llama-3.2-3B A Distilled models @ |Interpolated models

Figure 21: Model size interpolation with different student initialization and patching order
with Llama 3.2 3B. We find that the distilled student model trained by initializing with the first two
layers and every other layer from the teacher model, and then patching from the first layer to the
last, creates the best interpolated models in Llama 3.2 3B.

one student layer needlessly decreases the alignment between subsequent student and base model
layers. In Figure 22, we find that keeping the first and second Llama-3.2-3B layers indeed results
in significantly higher cosine similarity between student and base model layers. This translates
to significantly higher student and interpolation performance (Figure 21 pink and yellow lines),
especially when combined with our strategy of patching layers starting from the first model layers
(Figure 21 pink line).

Takeaways. In summary, we observe that for some base models (such as Llama-3.2-3B), naive
initialization and patching approaches are insufficient. We identify low cosine similarity between
key base model layers as a contributing factor to this issue. We find that we can improve perfor-
mance by choosing a student patching order that prioritizes blocks of teacher layers with low cosine

27

Preprint

similarity or by initializing the student model in a manner that ensures the activations of the first and
last layer in each block b do not have low cosine similarity to each other.

-(0e74|0.06 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.05
40.08, .0.99 0.99]0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.94 0.92 0.90 0.89 0.87 0.85 0.82 0.79 0.76 0.73 0.70 0.67 0.64 0.59 [tKe¥]

RLA0EY 0.99 0.99/0.99(0.99/0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.93 0.91 0.89 0.88 0.86 0.82 0.79 0.76 0.74 0.70 0.67 0.64 0.59 [}

o
oo

B[N0} 0.98 0.98 0.98 0.98/0.99/0.98{0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.93 0.91 0.90 0.88 0.87 0.83 0.80 0.77 0.75 0.71 0.68 0.65 0.60:
RLK0EY 0.97 0.97 0.97 0.97 0.97 0.98{0.98{0.98/0.97 0.97 0.96 0.96 0.95 0.94 0.92 0.90 0.89 0.87 0.84 0.81 0.78 0.75 0.72 0.69 0.65 0.60 [AX]

ELKor4 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97/0.98/0.97)|0.97 0.96 0.95 0.94 0.92 0.91 0.89 0.88 0.84 0.81 0.79 0.76 0.73 0.69 0.66 0.61 [Nz

<
>

ALiejlwIg BUISOT) UOIBAIIDY

RLK0EY 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96]0.97)0.97{0.96 0.95 0.93 0.92 0.90 0.89 0.86 0.83 0.80 0.78 0.74 0.71 0.68 0.62 [
EBT 0.92 0.93 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.95 0.95{0.97{0.96/0.95 0.93 0.92 0.91 0.88 0.85 0.82 0.80 0.77 0.73 0.70 0.64 [¢Xxg

R84 0.89 0.89 0.89 0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.92 0.92 0.94 0.94/0.96/0.95{0.94 0.93 0.91 0.88 0.86 0.84 0.81 0.77 0.74 0.68 [UMN}

© 0 ~1 O UL = W N — O

<
o~

B84 0.85 0.86 0.86 0.86 0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.89 0.90 0.91 0.93 0.93{0.95{0.94{0.92 0.91 0.89 0.87 0.84 0.80 0.77 0.71 [UNEX
R348 0.79 0.80 0.80 0.80 0.80 0.81 0.81 0.81 0.82 0.82 0.83 0.84 0.85 0.86 0.89 0.89 0.91 0.91/0.94/0.93]0.91 0.90 0.88 0.85 0.82 0.75 (UMK}
B84 0.75 0.75 0.76 0.76 0.76 0.76 0.77 0.77 0.77 0.78 0.78 0.79 0.81 0.82 0.85 0.86 0.88 0.88 0.91 0.91]0.92/0.92(0.90 0.87 0.84 0.78 [U¥X}

<
N

Distilled Student Model Layer Number

R348 0.70 0.70 0.70 0.71 0.71 0.71 0.71 0.72 0.72 0.72 0.73 0.74 0.75 0.77 0.79 0.80 0.82 0.83 0.86 0.87 0.89 0.89/0.90{0.90/0.87 0.81 [k}

E[ON88 0.65 0.66 0.66 0.66 0.66 0.67 0.67 0.67 0.67 0.67 0.68 0.69 0.70 0.71 0.74 0.75 0.77 0.77 0.80 0.81 0.83 0.83 0.85 0.85|0.88|0.87 |(UK{}

1410.06 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.07 0.09 0.12 0.13 0.15 0.16 0.20 0.22 0.25 0.26 0.29 0.30 0.35 0.4

01 23456 78 910111213 141516 17 18 19 20 21 22 23 24 25 26 27
Base Model (Llama-3.2-3B) Layer Number

Student to teacher mapping
[Copied layer ~ [C—J Aligned layer

Figure 22: Per-layer cosine similarity between the output activations of the distilled student
model initialized with the first two teacher layers and the teacher model, Llama 3.2 3B. After
distilling a student model initialized with the first two layers (Equation 3), all student layers have

high cosine similarity to their corresponding teacher block (layer 0¥i) shown in pink and layer

05? #1710 shown in yellow). Thus, patching the student model recovers smooth interpolation perfor-

mance (Figure 21).

J STUDENT MODEL SIZE ABLATION COSINE SIMILARITY ANALYSIS

Here, we study the per-layer cosine similarity between each pair of distilled and base model layers
in the student model initialized with every 4th layer in Figure 8. We use the same setup as in
§I to calculate the cosine similarity values. Figure 23 shows that student layers 0 and 4-11 have
high cosine similarity to the outputs of their corresponding teacher blocks (shown in yellow). In
contrast, student layers 2-3 have low cosine similarity to the input and output activations of their
corresponding teacher blocks, while layer 1 has high cosine similarity to the first layer in its teacher
block but not the last one. Thus, when student layers are patched starting from the last layers of
the model in Figure 8, the performance increases for the first 4 patched student layers (7,6, 5, 4),
then decreases in the low cosine similarity region when patching (3, 2) before increasing again. This
supports the results in §I and indicates that cosine similarity between the student layer and the layers
in its corresponding teacher block is correlated with interpolation performance.

K ADDITIONAL EVALUATION RESULTS

Here, we provide perplexity, per-task classification accuracy, and per-task exact match generation
accuracy for experiments in §3.

K.1 PERPLEXITY
Comparing boomerang distillation to naive layer pruning and randomly initialized distillation.

Figure 24 shows that boomerang distillation interpolates smoothly in terms of perplexity between
the student and the distilled model, while perplexity degrades for naive layer pruning as more layers

28

Preprint

.
v
e)
£ = 0.8
> >
=2 0.27//0.27 0.27//0.28, [a]
= j o
& 3 0.24 0.25 0.26 0.26 0.27 0.28| 5
B %
=y 0.6 3
— =3
< o
o 5 8
= g
= 04 &
qc) 7 0.24 0.22 0.23 0.26 0.33 0.37 0.41 0.42 0.42 0.42 0.43 0.43 0.44 0.44 [%2]
K] %)
a 8 0.24 0.21 0.22 0.25 0.33 0.37 0.34 0.35 0.35 0.35 0.36 0.36 0.37 0.37 0.38 0.38 0.36 0.37 0.37 0.39 0.40 0.40 0.42 i_
[%2] o
el 9 0.23 0.20 0.21 0.25 0.32 0.36 0.29 0.30 0.30 0.30 0.31 0.31 0.32 0.32 0.33 0.33 0.31 0.32 0.32 0.34 0.35 0.35 0.37 0.40 0.59 0.63 0.69 0.73 0.7 02 3
2 <
E 10 0.22 0.19 0.20 0.23 0.31 0.35 0.14 0.15 0.15 0.15 0.16 0.16 0.17 0.17 0.18 0.18 0.17 0.18 0.18 0.20 0.21 0.21 0.23 0.26 0.31 0.34 0.37 0.41 0.57 0.62 0.6
&
@ 17 40.03 0.01 0.01 0.02 0.04 0.05 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.11 0.12 0.14 0.15 0.18 0.21 0.29

0.0

01234567 8 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Base Model (Qwen3-4B-Base) Layer Number

Student to teacher mapping
[Copied layer =~ [—J Aligned layer

Figure 23: Per-layer cosine similarity between the output activations of the distilled student
model initialized with every 4th layer and the teacher model, Qwen3-4B-Base. Student layers
with high cosine similarity to the outputs of their teacher blocks have predictable interpolation per-
formance when patched in Figure 8. On the other hand, student layers with low cosine similarity
see a decrease in interpolation performance when they are patched with their corresponding teacher
layers.

Wikitext Perplexity (1)

6 /
10 J Layer dropping strategy

%‘ Boomerang distillation
;;_ 10t = Naive layer pruning
& Interpolation from randomly

initialized distilled model

<

A.“..‘O.‘Q.“C
3.0 3.5 4.0
Parameter Count (Billions)
Model type
Y% Qwen3-4B-Base M Pruned models
A Distilled models @ |Interpolated models

Figure 24: Boomerang distillation creates models with smoothly interpolated size and perfor-
mance.

are dropped. All models interpolated from a randomly initialized distilled model have a perplexity
above 10%.

Wikitext Perplexity ()

A
KX w
| T
A Ma Boomerang distillation
A I :
- AW A Distilled intermediate
215 L) A models
s .. A Y& Pythia-2.8B
[5 ° 2.
d * -8 1 . A A ‘:\\? Llama-3.2-3B
® . Sﬁ{ Qwen3-4B-Base
*ye
10
3.0 3.5 4.0

Parameter Count (Billions)

Model type
* Pretrained models A Distilled models @ |Interpolated models

Figure 25: Interpolated models produced using boomerang distillation have comparable per-
formance to pretrained and naively distilled models.

Comparing boomerang distillation to standard knowledge distillation. In Figure 25, small dis-
tilled models have slightly lower perplexity than interpolated models, while larger distilled models

29

Preprint

have slightly higher perplexity than interpolated models. This follows our observations in §3.2.
However, one notable difference is that while pretrained Pythia-2.8B and Llama-3.2-3B models
have similar classification and generation performance but lower perplexity than interpolated mod-
els. This is likely due to their extensive pretraining on next-token prediction.

Wikitext Perplexity (1)

10°
10°
R_ - Layer dropping strat.egy.
2904 | Boomerang distillation
£10
= \ = Naive layer pruning
&10° . ShortGPT
Y LaCo
107 I‘I.._
oA Ye
3.0 3.5 4.0
Parameter Count (Billions)
Model type

i\(Qwen3-4B-Base M Pruned models
A Distilled models @ Interpolated models

Figure 26: Boomerang distillation performs significantly better than depth pruning methods.

Comparing boomerang distillation to layer pruning methods. In Figure 26, we show that
boomerang distillation interpolates smoothly in terms of perplexity between the student and the
distilled model, while all layer pruning approaches increase significantly in perplexity after more
than six layers are dropped.

K.2 CLASSIFICATION TASKS

In this section, we report per-task classification accuracy in Figures 27-30 for experiments in §3. We
find that the per-task results for all experiments align with the mean performance reported in §3.

K.3 GENERATION TASKS

Here, we show per-task generation exact match accuracy in Figures 31-34 for experiments in §3. We
find similar trends in per-task generation performance as reported for the mean generation accuracy
in §3.

L PRUNING METHOD DETAILS

In this section, we describe how we prune layers in the comparisons to Layer Collapse (LaCo) (Yang
et al., 2024) and ShortGPT (Men et al., 2024) in Figures 7, 16, 19, 30, and 34.

LaCo. LaCo loops through all the model layers and iteratively merges chunks of C layers if the
cosine similarity of the last layer hidden activations of the merged model and the last layer hidden
activations of the original model is above a certain threshold 7. The LaCo layer merging operation
for a chunk starting at layer ¢ is performed by adding the difference in weights between each merged
layer and 8 to 8(Y) to create a new model 8*, where

c
00 = g0 1 Z o+t _ g0 4)

i=1

In order to construct the LaCo models, we compute the cosine similarity values on a held-out calibra-
tion set of 16 samples from the Pile (Gao et al., 2021). We follow the hyperparameter setup detailed
in the appendix of Yang et al. (2024). We set the layer range parameters £ = 1 and H = N, where
N is the number of teacher layers. We also fix the minimum interval parameter Z = 2. To generate
models with different numbers of layers, we sweep over the set of threshold values 7 and number
of layers merged per operation C included in Yang et al. (2024). We provide the hyperparameter
details in Table 3.

30

Preprint

LaCo Hyperparameters Values
Number of layers merged per operation (C) {3,4,5,6}
Start of layer range (L) 1
End of layer range (H) Number of teacher layers NV
Minimum interval (Z) 2
Threshold (7) {0.95,0.85,0.75,0.65,0.55,0.45}

Table 3: Hyperparameters used to create LaCo models in Figures 7, 16, 19, 30, and 34

ShortGPT. In ShortGPT, model layers are pruned by first computing the Block Importance (BI)
score, or the cosine distance between the input and output activations for the layer:

(%) (i+1)
BI(’)zl—EXj[J. U 1
’ 7 7+1
[ESTRT el

Then, layers are removed sequentially by pruning the layer with the lowest BI score. We compute
BI with respect to a held-out set of 128 calibration texts from the Pile (Gao et al., 2021).

M USE OF LARGE LANGUAGE MODELS

We utilized generative Al tools for code completion, debugging, and minor grammatical corrections
in the manuscript. The authors carried out all the substantive research contributions, analyses, and
interpretations.

31

Preprint

ARC-easy Accuracy (1) ARC-challenge Accuracy (1)

0.8

=
>

T
n

Accuracy

N
-

..]

3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
BoolQ Accuracy (1) HellaSwag Accuracy (1)

o
ot

: AV/M daerr -
7\

Accuracy
f=]
f=2]
Accuracy
o
=

|

0.3
3] e IR
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
OpenBookQA Accuracy (1) PIQA Accuracy (1)
0.3 / > ._._.) ; i
o™ T 07 MW
g x> g
5 5
< <06
- 0.5
30 35 10 ’ 30 35 10
Parameter Count (Billions) Parameter Count (Billions)
WinoGrande Accuracy (1) RACE Accuracy (1)
v o o™
oy oy
©0.6 I
3 NM 303
<< <
0.5 B ‘
0.2 i I
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
MMLU Accuracy (1) RTE Accuracy (1)
0.8 /ﬁ
0.6 / 0.7 /
> >
& & I
3 306
<04 o’ < I
J 05 \ .4
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)

Layer dropping strategy

i . . Interpolation from randomly
Boomerang distillation === Naive layer pruning == initialized distilled model

Model type
5% Pretrained models A Distilled models B Pruned models @ Interpolated models

Figure 27: Boomerang distillation creates models with smoothly interpolated size and per-task
classification accuracy.

32

Preprint

0.80

Accuracy
P
=

=
o
S

=
>
19}

Accuracy

0.6

Accuracy
o
[
=1
wt

0.250

Accuracy

0.6

Accuracy

Figure 28: Interpolated models produced using boomerang distillation have comparable per-

ARC-easy Accuracy (1)

ARC-challenge Accuracy (1)

Parameter Count (Billions)
Boomerang distillation
A Distilled intermediate
models
Y Pythia-2.88B
Model type
* Pretrained models

A Distilled models

Parameter Count (Billions)
i\(Llama-3.2-3B
i\(Qwen3-4B-Base

@ Interpolated models

task classification accuracy to pretrained and naively distilled models.

33

A 0.5 A
A Yo oA K
AWK g AXA
A 304
g &
a A
5 A*A 0.3 ag B
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
BoolQ Accuracy (1) HellaSwag Accuracy (1)
AA"A 0.55 w e
A A
i}A 0.50 A
X g A
3 A
M, a <045 K A
A VS
AX
0.401.A
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
OpenBookQA Accuracy (1) PIQA Accuracy (1)
e w| o W
b4 A A
50.750
i AdA A |5 * AebdA
A4 <05 A
A A
A
S A 0.7001 A
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
WinoGrande Accuracy (1) RACE Accuracy (1)
* #
) A K
£ A A 3u,4() * a
£ A
3038 A
A 2 A
A 1A A
A*A Aed 0.36 WY
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
MMLU Accuracy (1) RTE Accuracy (1)
P 0.8
K A W
*A A §0.1 N A
3 A
A <06 A
X soa” Y A
ARETK L%
3.0 3.5 4.0 3.0 3.5 4.0

Preprint

ARC-easy Accuracy (1) ARC-challenge Accuracy (1)

’ 05 -
0.80 :
2
0.75
¥ B
0.70

0.65'# 03 |

Accuracy
Accuracy
(=)

'Sy

3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
BoolQ Accuracy (1) HellaSwag Accuracy (1)
0.55
0.8 0~ VJ
0.50
S H
3 3
<< <
0.6 0.45 V
05 0.40 /
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
OpenBookQA Accuracy (1) PIQA Accuracy (1)
0.775
0.300
> A P 30.750
£0275 \ A4 £
o o
s Soms
0.250 Nz
0.700
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
WinoGrande Accuracy (1) RACE Accuracy (1)
0.70 ﬁ"? R
i 0.40
gD.GS g b
3 30.38 A
<0.60 < /
-
0.36 SEm—
0.55 I ‘
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
MMLU Accuracy (1) RTE Accuracy (1)
0.8
0.6
> 0.7
e e
=1 =1
3 3
<04 o’ <
0.6
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
Loss terms
Lcg Lcg + Lk Lee+Y, £L, Lee+ Lx+ Y, £l
Model type

i} Pretrained models A Distilled models ® |Interpolated models

Figure 29: Per-layer loss yields stable and smoother per-task classification accuracy for inter-
polated models.

ARC-easy Accuracy (1)

ARC-challenge Accuracy (1)

N
=

s b o e
0.4
gos g ’/;TM
g sl per”
< < 0.3

o
o

3.0 3.5 4.0
Parameter Count (Billions)

BoolQ Accuracy (1)

3.0 3.5 4.0
Parameter Count (Billions)

HellaSwag Accuracy (1)

0.8 — 7
0.5
A
g |at g o™
L ool B g A Soaaee”
- e,) -~ b
03
0.1 |
4.0 3.0 3.5 4.0

Parameter Count (Billions)
OpenBookQA Accuracy (1)

Parameter Count (Billions)
PIQA Accuracy (1)

0.3 M’ﬁ
0.7 %w .’
g g P
I I
3 3
<02 <061
0.5
3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions)
WinoGrande Accuracy (1) RACE Accuracy (1)
07 ! o

Accuracy
o
[=2}

M Py

Accuracy
=
w

0.5
0.2
3.0 3.5 4.0 3 0 3 5 4.0
Parameter Count (Billions) Parameter Count (Billions)
MMLU Accuracy (1 RTE Accuracy (1)
0.6 0.7 A r." N
> > {
& &
2 2
<04 J £0.6
fgﬁwﬂ#l-l{. ol ol

3.0
Parameter Count B||||ons

3.0 3.5 4.0
Parameter Count (Billions)

Layer dropping strategy

Boomerang distillation === Naive layer pruning === ShortGPT LaCo

Model type

A Distilled models B Pruned models @ Interpolated models

i\(Pretrained models

Figure 30: Boomerang distillation has significantly better per-task classification accuracy than
depth pruning methods.

35

Preprint

GSMB8K Accuracy (1) IFEval Accuracy (1) MATH Accuracy (1)
07 . =
g g 20.04
‘5 ‘a' 0.3 ‘g Layer dropping strategy
< 0.50 < 1< Boomerang distillation
_§ -r:3 -Fd = Naive layer pruning
] ©02 ©0.02 K
=95 = = Interpolation from randomly
0.25 ke -
° ko] ° initialized distilled model
2 2 2
fia} w1 ﬁ_‘ - L
0.00 £ L i 0.00 {
3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions) Parameter Count (Billions)
Model type

ﬁ(Pretrained models A Distilled models B Pruned models @ |Interpolated models

Figure 31: Boomerang distillation creates models with smoothly interpolated size and per-task
generation accuracy.

GSMB8K Accuracy (1) IFEval Accuracy (1) MATH Accuracy (1)
0.75 PAY |
g A 7 A o
£ A €03 £0.02 oY Boomerang distillation
S 0.50 3 g A Distilled intermediate
<f__ - A i i models
2 209 g ool A Y Pythia-2.8B
2025 % 2 * N B Y Llama-32-38
]] g
u% N A u% o AR A AeA K A A u%, 2 A i}A Y% Qwen3-4B-Base
0.00 (A28 i b ¢ 0.001 Bk
3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions) Parameter Count (Billions)

Model type
* Pretrained models A Distilled models @ Interpolated models

Figure 32: Interpolated models produced using boomerang distillation have comparable per-
task generation accuracy to pretrained and naively distilled models.

GSMBK Accuracy (1) IFEval Accuracy (1) MATH Accuracy (1)

0.03 4
\ Loss terms

— Lcg
Lk + Lk

o1 .) Leg+Y; L4,

X \ |)

ﬁ B-n 24 ‘w’j] Log + L+ 3, L5
A i i v"{ &

0.00 — 0.00

3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions) Parameter Count (Billions)
Model type
i\{ Pretrained models A Distilled models @ Interpolated models

Bl
4
>

C

\\

j=]

o

B
I

Exact Match Accuracy
Exact Match Accuracy
i
Exact Match Accuracy
o
2
g

=

Figure 33: Per-layer loss yields stable and smoother per-task generation accuracy for interpo-
lated models.

GSMB8K Accuracy (1) IFEval Accuracy (1) MATH Accuracy (1)
07 N Piq .
S S o 180.04 .
‘g § 0.3 /- ::'), Layer dropping strategy
< 0.50 £ 4 I£ Boomerang distillation
f: _g " ’J‘ —};; o === Naive layer pruning
=05 s - = ShortGPT
g 8 A r 8 LaCo
ui D001 s I
0.004% e —a w 0.00{ 42 o ma
3.0 3.5 4.0 3.0 3.5 4.0 3.0 3.5 4.0
Parameter Count (Billions) Parameter Count (Billions) Parameter Count (Billions)

Model type
Y% Pretrained models A Distilled models M Pruned models ~ @ Interpolated models

Figure 34: Boomerang distillation has significantly better per-task generation accuracy than
depth pruning methods.

36

	Introduction
	Boomerang Distillation: Knowledge Distillation with Student Patching
	Student Initialization
	Knowledge Distillation
	Student Patching

	Experiments
	The Boomerang Distillation Phenomenon
	How Good is Boomerang Distillation?
	Effect of Knowledge Distillation
	Zero-shot Model Size Interpolation with Existing Off-the-shelf Models
	Comparison to Layer Pruning Methods
	Ablations

	Related work
	Conclusion
	Limitations
	Boomerang Distillation Implementation
	Hyperparameters
	Datasets
	Additional ablation experiments
	Ablating Distilled Model Sizes
	Impact of Training Tokens

	The Boomerang Distillation Phenomenon with Qwen, Pythia, and Llama Models
	Qwen3-8B-Base
	Pythia-2.8B and Pythia-6.9B
	Llama-3.2-3B

	Pythia-2.8B Full Results
	Llama-3.2-3B Full Results
	Llama-3.2-3B Cosine Similarity Analysis
	Student Model Size Ablation Cosine Similarity Analysis
	Additional evaluation results
	Perplexity
	Classification Tasks
	Generation Tasks

	Pruning method details
	Use of Large Language Models

