
DDEQs: Distributional Deep Equilibrium Models
through Wasserstein Gradient Flows

Jonathan Geuter Clément Bonet Anna Korba David Alvarez-Melis
Harvard University CREST, ENSAE, IP Paris CREST, ENSAE, IP Paris Harvard University

Abstract

Deep Equilibrium Models (DEQs) are a class
of implicit neural networks that solve for a
fixed point of a neural network in their for-
ward pass. Traditionally, DEQs take se-
quences as inputs, but have since been ap-
plied to a variety of data. In this work,
we present Distributional Deep Equilibrium
Models (DDEQs), extending DEQs to dis-
crete measure inputs, such as sets or point
clouds. We provide a theoretically grounded
framework for DDEQs. Leveraging Wasser-
stein gradient flows, we show how the for-
ward pass of the DEQ can be adapted to
find fixed points of discrete measures under
permutation-invariance, and derive adequate
network architectures for DDEQs. In ex-
periments, we show that they can compete
with state-of-the-art models in tasks such
as point cloud classification and point cloud
completion, while being significantly more
parameter-efficient.

1 INTRODUCTION

Implicit neural networks such as Deep Equilibrium
Models (DEQs) [Bai et al., 2019] or Neural ODEs
[Chen et al., 2018] have recently emerged as a promis-
ing class of networks which, instead of explicitly
computing outputs of a neural network, find equi-
libria of certain dynamics implicitly. They simulate
“infinitely deep” networks with adaptive depth, while
maintaining a constant memory footprint thanks to
their implicit nature.

DEQs solve for the equilibrium point of a model
in their forward pass, and in the backward pass,

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

ZX̃

X

q DDEQ Z∗ q-1 Y∗

Figure 1: Point cloud completion with DDEQs for
an airplane. We add random particles to the partial
input point cloud X (red) to create the DDEQ input
X̃ (orange), which we upscale by an invertible layer q.
The DDEQ outputs a prediction Y∗ (blue), which is
compared against the target (green) with a MMD loss.

Jacobian-based linear fixed-point equations [Bai et al.,
2019] or Phantom Gradients [Geng et al., 2021] are
used to approximate the gradient, without the need
to backpropagate through a large number of stacked
layers, which would be prohibitively expensive. Origi-
nally, DEQs were introduced for sequence-to-sequence
tasks such as language modelling [Bai et al., 2019],
since the implicit nature of the network mandates the
outputs to be of the same shape as the inputs. They
have since been applied to tasks such as computer vi-
sion [Bai et al., 2020] leveraging multi-scale network
outputs, and exhibit competitive performance with
state-of-the-art explicit models.

In this paper, we apply DEQs to data that comes in the
shape of discrete probability measures seen as a set of
particles. Various types of data, such as sets, graphs,
or point clouds, can be viewed through this distribu-
tional lens. It arises in areas such as autonomous driv-
ing, robotics, or augmented reality [Mao et al., 2023,
Zhu et al., 2024a], and often stems from sensors scan-
ning their environments with discrete measurements.
Various architectures for distributional data have been
proposed, ranging from deep networks with simple fea-
ture transformations [Zaheer et al., 2017, Qi et al.,
2017a,b] to attention based models [Lee et al., 2019,

ar
X

iv
:2

50
3.

01
14

0v
2

 [
cs

.L
G

]
 2

3
M

ar
 2

02
5

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Zhao et al., 2021]. In this work, we present DDEQs,
short for Distributional Deep Equilibrium Models,
which process distributional data and feature very flex-
ible architectures that can be applied to a variety of
tasks. The main challenge in using DEQs on measure
inputs lies in the fixed point solver: traditional solvers
such as fixed point iteration, Newton’s method, or An-
derson acceleration [Bai et al., 2019] cannot produce
fixed points under permutation invariance of the par-
ticles. We propose to minimize a discrepancy between
probability distributions to find fixed points in the for-
ward pass. To this end, we rely on Wasserstein gradi-
ent flows (WGFs) [Ambrosio et al., 2008, Santambro-
gio, 2017], which are gradient flows of a functional in
the space of probability measures.

While many permutation-equivariant measure-to-
measure architectures exist [Zaheer et al., 2017, Qi
et al., 2017a, Lee et al., 2019], DDEQs are, to our
knowledge, the first class of measure-to-measure neu-
ral networks whose forward pass is agnostic to permu-
tations, which is an important step towards properly
treating inputs as measures.

We provide a theoretically grounded framework for
DDEQs, proving that they enjoy the same backward
pass as traditional DEQs, deriving the Wasser-
stein gradient of the forward pass, and proving a
convergence result for the average gradient of the
optimization loss. In experiments on point cloud
classification and point cloud completion, we show
that DDEQs can compete with state-of-the-art archi-
tectures, and believe they can open the door to a new
class of neural networks for point cloud processing.

2 RELATED WORK

Deep Equilibrium Models. Since their introduc-
tion [Bai et al., 2019], DEQs have been extended in
several key directions. To improve representational
capabilities, multiscale DEQs [Bai et al., 2020] intro-
duce hidden states at different resolutions. Jacobian
regularization [Bai et al., 2021] and Lyapunov-stable
DEQs were shown to stabilize training. One of the
main drawbacks of DEQs, their slow training, is ad-
dressed by Phantom Gradients [Geng et al., 2021], an
approximation of the true gradient direction, which we
also utilize in training DDEQs. Existence guarantees
for fixed points in DEQs, as well as convergence guar-
antees, are difficult to obtain in theory however, and
typically involve imposing restrictions on the model
weights or activations [Winston and Kolter, 2020,
El Ghaoui et al., 2021, Gabor et al., 2024, Ling et al.,
2024]. These works also study the uniqueness of the
DEQ fixed point under the assumption that the model
takes the form f(z, x) = ϕ(Wz + Ux + b) for weights

W , U , and b. This setting only covers single-layer
affine networks with fixed-size inputs; in particular,
it does not include attention-based networks like
transformers as we are using in this work. This goes
to show that studying questions of uniqueness and
existence of fixed points for DEQs is challenging, but
establishing results for attention-based networks is
beyond the scope of this work.

Bilevel Optimization. DEQ training can be seen as
a particular instance of a bilevel optimization problem
[Ji et al., 2021], where the goal is to minimize an outer
objective

L(θ) = f(θ, y∗θ)

over parameters θ ∈ Rw, with the inner problem

y∗θ = arg min
y∈Rp

g(θ, y).

Typically, θ are the parameters of a neural network,
and the inner problem corresponds to an empirical
loss. The gradient of the outer problem w.r.t. the pa-
rameters θ can be computed implicitly with the inverse
function theorem [Bai et al., 2019, Ye et al., 2024],
whereas the inner loop is often solved iteratively with
root solving algorithms [Bai et al., 2019]. However, er-
rors in the inner loop can propagate to the outer loop,
leading to inexact gradients [Ye et al., 2024]. Var-
ious approaches to reduce the inner loop error have
been proposed in the literature, such as sparse fixed
point corrections [Bai et al., 2022], warm starting [Bai
et al., 2022, Geuter et al., 2025, Thornton and Cu-
turi, 2023, Amos et al., 2023], and preconditioning or
reparametrizing the inner problem [Ye et al., 2024].
Other studies have investigated the role of the number
of iterations for the inner loop at train versus infer-
ence time [Ramzi et al., 2023]. Recently, it was also
proposed to jointly solve the inner and outer problem
in a single loop for some bilevel optimization problems
[Dagréou et al., 2022, Marion et al., 2024]. We leave
studying the effect of these strategies on DDEQs for
future research.

Point Cloud Networks. Neural architectures acting
on point cloud inputs have seen significant advance-
ments in recent years, and been applied to a multitude
of tasks. For classification, PointNet [Qi et al., 2017a]
was groundbreaking in directly processing unordered
point clouds using shared MLPs and a max-pooling op-
eration, while PointNet++ [Qi et al., 2017b] improved
upon this by capturing local structures using hierarchi-
cal feature learning. Set Transformers [Lee et al., 2019]
introduced attention mechanisms to improve permuta-
tion invariance, and Point Transformers [Zhao et al.,
2021] further leveraged attention for capturing both lo-
cal and global features, achieving state-of-the-art per-
formance. Notably, the attention layer in Point Trans-

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

formers uses vector attention instead of scalar atten-
tion (i.e. where attention scores are vector-valued),
and features positional encodings which learn dis-
tances between input particles. While our architecture
also builds on attention networks (see Section 3.6),
we use scalar attention without positional encodings,
as we did not find the attention network from Point
Transformers to work particularly well for DDEQs.

For point cloud completion [Fei et al., 2022], several
approaches have emerged. AtlasNet [Groueix et al.,
2018] introduced a method that learns to map 2D
parametrizations to 3D surfaces to reconstruct com-
plete shapes, while PCN [Yuan et al., 2018] features a
coarse-to-fine reconstruction strategy. PMP-Net [Wen
et al., 2021] learns paths between particles in the in-
put and the target, and moves input particles along
these paths. However, none of these methods exactly
preserve the input point cloud as part of the output.
Instead, they predict a new point set that approxi-
mates the complete shape. Preserving inputs can be
important in applications where exact input fidelity is
required. We show that DDEQs are architecturally
well-suited to predict point cloud completions that ex-
actly preserve inputs.

Wasserstein Gradient Flows. WGFs offer an
elegant way to minimize functionals with respect to
probability distributions, making them an increasingly
popular choice for various applications ranging from
generative modeling [Fan et al., 2022, Choi et al., 2024]
and sampling [Wibisono, 2018, Lambert et al., 2022,
Huix et al., 2024] to reinforcement learning [Ziesche
and Rozo, 2023] and optimizing machine learning
algorithms such as gradient boosting [Matsubara,
2024]. With suitable discretization of the flows,
various objectives for minimization have been studied,
including the Kullback-Leibler divergence [Wibisono,
2018], the Maximum Mean Discrepancy (MMD) [Ar-
bel et al., 2019, Altekrüger et al., 2023, Hertrich et al.,
2024] and their variants [Glaser et al., 2021, Chen
et al., 2024b, Neumayer et al., 2024, Chazal et al.,
2024], Sliced-Wasserstein distances [Liutkus et al.,
2019, Du et al., 2023, Bonet et al., 2025] or Sinkhorn
divergences [Carlier et al., 2024, Zhu et al., 2024b].

3 DDEQs

Notation. Denote by P2(Rd) the space of probabil-
ity measures on Rd with finite second moments; for
µ ∈ P2(Rp) and a function F : Rp → Rp, denote by
F#µ ∈ P2(Rp) the push-forward measure of µ by F ,
and for G : P2(Rp) → R denote by ∇WG(µ) : Rd →
Rp the Wasserstein gradient of G at µ, if it exists.
δG
δµ : Rd → R denotes the first variation of G. For any

µ ∈ P2(Rd), we denote by L2(µ) the space of functions

f : Rd → Rd such that ∥f∥2L2(µ) :=
∫
∥f∥2dµ <∞ and

by Id ∈ L2(µ) the identity map. Background on mea-
sure theory, optimal transport, and Wasserstein gra-
dient flows, as well as all missing proofs, can be found
in Appendix B.

3.1 Deep Equilibrium Models

Given an input data x ∈ Rd, a DEQ initializes a la-
tent variable z and aims to find a fixed point z∗ ∈ Rp

of the function Fθ(·, x), where Fθ is a neural network
parameterized by weights θ ∈ Rw. Adding the latent
variable z instead of directly operating on x has sev-
eral advantages, such as parametrizing a unique fixed
point function Fθ(·, x) for each input x instead of using
the same function Fθ(·) for all inputs, which improves
the richness of the fixed points, and the dimension of
the latent z can be chosen arbitrarily, increasing the
flexibility and complexity of the model. One way to
find fixed points would be via function iterations:

zl+1 = Fθ(zl, x), l = 0, 1, ..., L− 1,

for a large L. This sequence could be backpropa-
gated through to find gradient directions; however,
this would be prohibitively expensive. Hence, root
solvers such as Newton’s or Anderson’s method are
used to find roots of the function gθ(z) = Fθ(z, x)− z.
Then, the gradient for the backward pass can be com-
puted through the inverse function theorem [Blondel
and Roulet, 2024]. Suppose the fixed point z∗ is passed
through a non-parametric function h, and a loss l be-
tween h(z∗) and the target y is computed as l(h(z∗), y).
Then the following formula holds [Bai et al., 2019]:

dℓ

dθ
=
∂ℓ(h(z∗θ))

∂h

∂h(z∗θ)

∂z∗θ

(
I − ∂Fθ(z∗θ , x)

∂z∗θ

)−1
∂Fθ(z∗θ , x)

∂θ
.

(1)
Importantly, this is independent of how the fixed point
was attained, hence any black-box root solver can be
used. However, due to the inverse Jacobian, (1) is
costly to compute precisely, but efficient approxima-
tion methods have been developed [Bai et al., 2019,
Geng et al., 2021].

3.2 DDEQs as Bilevel Optimization

We will now turn to distributional inputs and latent
variables. Let ρ ∈ P2(Rd) be the input, µ ∈ P2(Rp)
be the latent variable, and Fθ : P2(Rp) × P2(Rd) →
P2(Rp) be a function parameterized by some θ ∈ Rw.
Let Y be the target space (which can be Euclidean or
itself be a probability measure space), i.e., our dataset
consists of samples (ρ, y) ∈ P2(Rd) × Y. Depending
on the task, we might further have to process a fixed

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

point µ∗
θ,ρ of Fθ(·, ρ), hence we let hθ : P2(Rp) → Y,

which maps latent fixed points µ∗
θ,ρ to predictions such

as class labels, also be parametrized by θ. Further-
more, let ℓ : Y × Y → R be a loss function and
D : P2(Rp)×P2(Rp)→ R be a distance or divergence
between probability distributions. We can write, for
any input data ρ ∈ P2(Rd) and θ ∈ Rw,

µ∗
θ,ρ = arg min

µ∈P2(Rp)

D
(
µ, Fθ(µ, ρ)

)
:= Gθ,ρ(µ), (2)

since the optimizers of the functional Gθ,ρ are precisely
the fixed points of Fθ(·, ρ). Note that existence of
fixed points in DEQs is difficult to prove, and typically
involves imposing restrictions on the model weights
[Winston and Kolter, 2020, Gabor et al., 2024]. We
leave deriving such guarantees for DDEQs for future
work.

A natural optimization scheme for minimizing the loss

L(θ) := Eρ,y∼Pdata

[
ℓ
(
hθ(µ∗

θ,ρ), y
)]

(3)

with respect to θ ∈ Rw is gradient descent, i.e. for all
k ≥ 0, θk+1 = θk − γ∇L(θk). However, since

∇L(θ) = Eρ,y∼Pdata

[
∇θℓ

(
hθ(µ∗

θ,ρ), y
)]
,

we need to solve the following two problems: i) find
a fixed point µ∗

θ,ρ, given θ and ρ (inner loop) and ii)

compute ∇θℓ
(
hθ(µ∗

θ,ρ

)
, y), given µ∗

θ,ρ and y. This will
enable us to solve (3) (outer loop). Hence, minimizing
L is a typical instance of a bilevel optimization prob-
lem. In section 3.3, we will see how to solve the inner
problem (2), and in section 3.4, we will investigate
computing the gradient ∇θℓ(hθ(µ∗

θ,ρ), y) and solving
the outer problem.

3.3 Inner Optimization

In this section, we focus on the inner problem (2).
Let Gθ,ρ(µ) := D

(
µ, Fθ(µ, ρ)

)
for an input ρ ∈ P2(Rd)

and parameters θ ∈ Rw (we will sometimes drop the
dependency on θ and ρ for ease of reading). In the
following, we assume for simplicity that we can write
Fθ(µ, ρ) = Fθ#µ, i.e., as some push-forward (drop-
ping the dependency on a fixed ρ for ease of no-
tation)1. Note that this is not possible in general,
as the push-forward itself might depend on µ (i.e.,
Fθ(µ, ρ) = Fθ(µ)#µ, as used in [Furuya et al., 2024,
Castin et al., 2024]). However, it is a reasonable as-
sumption in our setting (for more details, see Ap-
pendix D.3). Since (2) is an objective over probability
measures, the natural dynamic to minimize it is follow-
ing its Wasserstein gradient flow t 7→ µt, which solves

1This is also a slight abuse of notation, as Fθ in Fθ#µ
is now a map from Rp to Rp.

the following continuity equation:

∂tµt =div
(
µt∇WGθ,ρ(µt)

)
, (4)

where ∇WGθ,ρ(µ) denotes the Wasserstein gradient of
Gθ,ρ at µ. Its existence, of course, depends on the na-
ture of G, i.e., the choice of D. In practice, we use
D = 1

2MMD2, the squared maximum mean discrep-
ancy [Gretton et al., 2012], which is defined as

MMD2 (µ, ν) =

∫∫
k(x, y) d(µ− ν)(x)d(µ− ν)(y),

for a symmetric positive definite kernel k : Rp×Rp →
R. Hence, our inner optimization loss takes the form

Gθ,ρ(µ) =
1

2
MMD2

(
µ, Fθ(µ, ρ)

)
.

The MMD is comparably fast to compute, with a time
complexity of O(n2) where n is the number of par-
ticles (when µ, ν are discrete and both supported on
n particles), whereas e.g. the time complexity of the
Sinkhorn algorithm [Cuturi, 2013] is O(n2 log(n)/ϵ2)
[Dvurechensky et al., 2018], where ϵ is the regular-
ization parameter and typically fairly small. Further-
more, the MMD is well defined between empirical dis-
tributions with different support (unlike, for example,
the KL Divergence), and a Wasserstein gradient of the
MMD to a fixed target measure exists and can be eval-
uated in closed form in quadratic time [Arbel et al.,
2019] for smooth kernels. We will now show that this
result also extends to the setting where the target is a
push-forward of the source measure. To this end, we
first derive the Wasserstein gradient of a functional of
the form µ 7→ F(T#µ) for a µ-almost everywhere (a.e.)
differentiable push-forward operator T : Rp → Rp.

Proposition 1. Let µ ∈ P2(Rp), F : P2(Rp) → R,
T : Rp → Rp ∈ L2(µ) a µ-a.e. differentiable map and
define F̃(µ) := F(T#µ). Assume supx ∥∇T (x)∥op <
+∞. If the Wasserstein gradient of F at T#µ exists,

then the Wasserstein gradient of F̃ at µ also exists,
and it holds:

∇W F̃(µ) = ∇T
(
∇WF(T#µ)◦T

)
= ∇

(
δF
δµ

(T#µ) ◦ T
)
.

This allows us to derive the Wasserstein gradient for
our MMD objective from the chain rule.

Corollary 2. Let G(µ) := 1
2MMD2 (µ, T#µ). Define

the witness function fµ as

fµ :=

∫
k(·, y)dµ(y)−

∫
k(·, y)d(T#µ)(y),

where k : Rp×Rp → R is the kernel of the MMD, which
we assume smooth. Then the Wasserstein gradient of
G at µ exists, and is equal to

∇WG(µ) = ∇fµ −∇(fµ ◦ T). (5)

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Note that without convexity assumptions, we cannot
hope to find global optimizers of (2), as with most opti-
mization problems. Yet, following (minus) the Wasser-
stein gradient (5) lets us find a local minimizer. In
practice, we approximate (4) by discretizing it using
the forward Euler scheme, which is commonly referred
to as the Wasserstein gradient descent [Bonet et al.,
2024], for a step-size η > 0:

µk+1 =
(
Id− η∇WGθ,ρ(µk)

)
#
µk,

for all k ≥ 0, where Id is the identity map on L2(µk).

3.4 Outer Optimization

In this section, we derive a formula to compute the
derivative of the loss ℓ := ℓ

(
hθ(µ∗

θ,ρ), y
)

w.r.t. θ, hence
of the outer loss L given in (3).

Theorem 3. (Informal.) Let Y = Rn or Y =
P2(Ry), ρ ∈ P2(Rd) and y ∈ Y be fixed, and µ∗

θ ∈
P2(Rp) be a fixed point of F (·, θ) := Fθ(·, ρ). Assume

that
(

Id−Dµ∗
θ,ρ
F (µ∗

θ,ρ, θ)
)−1

◦ DθF (µ∗
θ,ρ, θ) : Rp →

Rw exists, where Id is the identity map in Rp. Then
under suitable differentiability assumptions it holds:

dℓ

dθ
= Dhℓ(h(µ∗

θ,ρ, θ), y) ◦
[
Dθh(µ∗

θ,ρ, θ)+

Dµ∗
θ,ρ
h(µ∗

θ,ρ, θ)◦
(

Id−Dµ∗
θ,ρ
F (µ∗

θ,ρ, θ)
)−1

◦DθF (µ∗
θ,ρ, θ)

]
.

The formal version and proof of Theorem 3 is deferred
to Appendix B.2 along with the definitions of the dif-
ferential of F relative to µ, which we define following
[Lessel and Schick, 2020]. Similar to Theorem 1 in
[Bai et al., 2019], Theorem 3 shows that the gradient
of ℓ w.r.t. θ can be computed implicitly, without
backpropagating through the inner loop. But as is
commonly done, we do not use this formula directly
in the backward pass, but instead use the phantom
gradient and autodifferentiation.

By analyzing the following continuous bilevel problem,
similarly to [Marion et al., 2024],{
∀ρ ∈ P2(Rd), ∂µt,ρ = div

(
µt,ρ∇WGθt,ρ(µt,ρ)

)
dθt = −εt∇L(θt)dt,

where ϵt > 0 corresponds to the ratio of learning rates
between the inner and the outer problems, we prove
a convergence result for the average of the outer op-
timization gradients in O(log(T)2/

√
T) in Appendix

B.3, which holds under suitable regularity assump-
tions on D and Fθ and a Polyak- Lojasiewicz inequality.
However, we note that these might not always hold for
the specific choice of D (i.e., an MMD) and Fθ in our
case; we refer the reader to the appendix for a more
detailed discussion.

3.5 Training Algorithm

Our training procedure is described in Algorithm 1. It
takes as input the number of iterations K ∈ N for the
outer loop, the number of iterations L ∈ N of the inner
loop, a (data) batch size B ∈ N, inner loop learning
rates ηl for l ∈ [L], and outer loop learning rates γk
for k ∈ [K]. In practice, our latents µ will be dis-
crete measures and have a finite number of particles,
where the number of particles Jµ is itself a hyperpa-
rameter2. We denote these particles by µθk,i(j) for
j = 1, . . . , Jµ

θk,i
, where µθk,i is the latent correspond-

ing to an input sample ρi. The initialization of µθk,i

as well as the dimension p of particles in the latents
µθk,i are chosen depending on the task, see Section 4.
To speed up computations, we pad all samples in the
batch with zeros (to align the number of particles) and
compute the inner loop over l for all B inputs in paral-
lel by leveraging adequate masking. We use the Riesz
kernel k(x, y) = −∥x− y∥ for the MMD, as it has
been shown to have better convergence than Gaussian
kernels [Hertrich et al., 2024, Hagemann et al., 2024].
Note this is not a positive definite kernel (neither a
smooth one), but the resulting distance (the energy
distance) is equivalent to an MMD [Sejdinovic et al.,
2013]. Further details on the implementation can be
found in Appendix C.

Algorithm 1 DDEQ Training Procedure

1: Initialize θ0 ∈ Rw

2: Input K,L,B ∈ N, ηl > 0, l = 0, ..., L; γk > 0,
k = 0, ...,K − 1; p ∈ N

3: for k ∈ {0, ...,K − 1} do
4: sample (ρ1, y1), ..., (ρB , yB) ∼ Pdata

5: Init µθk,i, i = 1, ..., B (e.g. µθk,i(j) ∼ N (0, Ip)
for j = 1, ..., Jµ

θk,i
)

6: for i = 1,...,B (in parallel) do
7: for l = 0,...,L− 1 do
8: µθk,i(j)← µθk,i(j)

− ηl∇WGθk,ρi
(µθk,i)(µθk,i(j))

for all particles µθk,i(j),
9: end for

10: end for
11: θk+1 ← θk − γk 1

B

∑B
i=1

[
∇θℓ(hθ(µθk,i), yi)

]
12: end for

3.6 Architecture

In this section, we will describe our architecture and
show that it fulfills certain criteria desirable for point
cloud processing. We want to emphasize, however,

2For classification, this could be a fixed number, while
for point cloud completion, it could be an estimate of the
number of particles in the complete point cloud. More
details can be found in section 4.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Z Bilinear

Self
Encoder

Cross
Encoder

Z∗

X

Self
Encoder

Feedforward network

Layer Norm

Figure 2: DDEQ Network architecture. There are two residual connection to the second and third layer norm
in the top row. All encoders are standard multi-head attention network (see appendix for more details).

that DDEQs are largely architecture-independent, as
long as the architecture is suitable for processing
point clouds, and more carefully designed architectures
could improve their performance. We leave the design
of such architectures for future research.

Recall that F = Fθ : P2(Rp) × P2(Rd) → P2(Rp),
(µ, ρ) 7→ F (µ, ρ) (in this section, we remove depen-
dency on θ for simplicity). Computationally, we will
represent empirical measures as matrices by stack-
ing the particles along the first dimension. That is,
we represent ρ =

∑M
i=1

1
M δxi ∈ P2(Rd) as a matrix

X ∈ RM×d, and µ =
∑N

i=1
1
N δzi

∈ P2(Rp) as a matrix
Z ∈ RN×p. Note that M depends on the data sample ρ
and N depends on the latent µ here; in particular, the
number of rows in the matrices varies across samples.
However, all architectures we discuss in this section
allow for variable numbers of particles in their inputs.

We will now derive a property which we will call the
EI Property that induces a useful inductive bias to
the network in our setting. A common approach to
design neural networks that act on matrices encoding
data without inherent ordering (e.g., sets or empiri-
cal distributions), and that make predictions such as
classifications, is to make them invariant under row
permutations. This corresponds to the fact that the
prediction should be independent under the ordering
of the points in the point cloud. Similarly, in the set-
ting where the output is another empirical measure of
the same size, making the network equivariant under
permutations of the rows of the input (i.e., if the input
is permuted in a certain way, the output is permuted
in the same way) is a common approach. Unlike in
most well-known architectures acting on set inputs,
such as Deep Sets [Zaheer et al., 2017], PointNet [Qi
et al., 2017a], or Set Transformer [Lee et al., 2019],
we are now dealing with two variables X and Z in-
stead of one, which makes the analysis a bit more del-
icate. Since our network outputs measures that have

the same number of particles as the latent Z, it is nat-
ural to consider networks F : RN×p×RM×d → RN×p,
(Z,X) 7→ F (Z,X) (abusing notation a bit, as we now
let F act on matrices) which are row-equivariant under
Z and row-invariant under X. While row-invariance
in Z would be closer to treating Z as a set, this is dif-
ficult to accomplish with standard network architec-
tures. However, we get a type of row-invariance in Z
“for free” by using a Wasserstein gradient flow forward
solver which finds fixed points up to permutations, as
opposed to classical forward solvers.

Definition 4 (EI Property). Let F : RN×p×RM×d →
RN×p, (Z,X) 7→ F (Z,X). The function F is said
to be permutation-Equivariant in Z and permutation-
Invariant in X, if for any permutations σN ∈ SN and
σM ∈ SM of the rows of Z and X, resp., it holds that

F
(
σN (Z), σM (X)

)
= σN

(
F (Z,X)

)
.

In that case, we say that F fulfills the EI Property.

By ensuring that our architecture fulfills the EI prop-
erty, we induce an inductive bias particularly well-
suited for point cloud data. In the following, we show
that a wide range of network building blocks fulfills
this property.

Proposition 5. Let F bil : RN×p × RM×d → RN×p,
(Z,X) 7→ F bil(Z,X). Then F bil is a bilinear map that
fulfills the EI property if and only if F bil is of the form

F bil(Z,X) = ZαX⊤1M + 1N1⊤NZβX⊤1M

for some tensors α, β ∈ Rp×p×d, where 1N , 1M denote
the vectors with ones in RN and RM .

EI also extends to self- and cross-attention, as well as
layers that process each particle separately, such as
Layer Normalization [Ba et al., 2016].

Proposition 6. Denote by MultiHead(tgt, src) multi-
head attention [Vaswani et al., 2017] between a tar-
get and source sequence. Then MultiHead(Z,Z) and
MultiHead(Z,X) both fulfill the EI property.

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Z

X

DDEQ Z∗ Y∗

Figure 3: The point cloud classification pipeline, where
Z is initialized independently of X, and the DDEQ is
followed by a max pool (purple) and linear (blue) layer.

We can now define our network architecture for Fθ,
which also fulfills the EI property, being a composi-
tion of functions that do. The core building blocks
are two self-encoder networks which compute the self-
attention on X and Z, resp., which are followed by a
cross-encoder network computing the cross-attention
between the target Z and the source X. All encoders
are standard multi-head attention encoders (see Ap-
pendix C.1). An overview of the complete network
architecture can be seen in Figure 2. Here, feedfor-
ward networks are two-layer linear networks with one
ReLU activation, which are applied on a per-particle
basis. Note how modules in the architecture have dif-
ferent input and output heights, which correspond to
the particle dimension. The network features the di-
mension of X (typically 2 or 3), the encoder dimension
which is the same as the dimension of Z, and the di-
mension of the bilinear layer which is typically much
smaller than the encoder dimension. Details on the
implementation can be found in section 4.2. Depend-
ing on the task, we pre- and post-process the in- and
outputs to the DDEQ in different ways.

Classification Pipeline. For classification, we
initialize Z ∼ N (0, I). We set hθ(Z∗) =
Linhθ

(MaxPool(Z∗)), where Linhθ
denotes a single lin-

ear layer, i.e. we first apply max-pooling along the par-
ticle dimension and then a single linear layer mapping
from the latent dimension to the number of classes.
The loss is the cross entropy between the predicted
and target labels. An overview is found in Figure 3.

Completion Pipeline. In point cloud completion
[Fei et al., 2022], the task is to predict a target point
cloud Y given a partial input point cloud X. Hence,
we could initialize Z to be equal to X, add a certain
number of “free” particles, and then let the network
learn to move the free particles to the right locations,
while keeping the particles that were initialized at X
fixed. However, this would mean that particles in Z
are of the same dimension as X. Instead we allow for
a higher hidden dimension of the particles to increase
expressiveness of the network. We first add a number

of free particles3 to X and call this X̃. Then we pad X̃
with zeros to match the latent dimension; call this Z̃.
We then feed Z̃ through an invertible neural network
q which takes the following form:

Z = q(Z̃) = [Z̃1, Z̃2e
ϕ(Z̃1) + ψ(Z̃1)]

q−1(Z) = [Z1, (Z2 − ψ(Z1))e−ϕ(Z1)],

where ϕ and ψ are two-layer neural networks, and
Z̃ = [Z̃1, Z̃2] is a partition of X into two equal-sized
chunks along the particle dimension. In this sense,
q−1 corresponds to hθ. The invertible network is a
parametrized coupling layer [Dinh et al., 2014] which
is typically used in normalizing flows [Kobyzev et al.,
2021] and invertible by definition; further details can
be found in the appendix. In the DDEQ forward pass,
we keep the particles in Z corresponding to inputs X
fixed. Once a fixed point Z∗ is found, we apply q−1 on
Z∗. This ensures the output still contains the input
particles X. The final loss is the squared MMD (with
the same Riesz kernel as before) between the predic-
tion and the target point cloud. Crucially, at no point
in training is the model given any information about
the class label. A schematic overview can be seen in
Figure 1. We highlight two key differences between our
approach and common point cloud completion algo-
rithms from the literature, such as AtlasNet [Groueix
et al., 2018], PCN [Yuan et al., 2018], or PMP-Net
[Wen et al., 2021]: firstly, we recover the input point
cloud exactly as part of the output, and secondly, we
choose the number of target particles adaptively based
on the input. Both of these properties can be crucial
in faithfully recovering completed point clouds.

4 EXPERIMENTS

We evaluate DDEQs on point cloud classification and
point cloud completion. Note that tasks such as point
cloud segmentation [Qi et al., 2017a] that require
identifying output particles with input particles
are not suitable for our architecture, because the
WGF solver inherently treats inputs as measures and
removes any “ordering” from the particles.

More extensive experimental results, including abla-
tion studies, a computational complexity analysis, and
results on the nature of the fixed points can be found
in Appendix D. The code is available at: https:

//github.com/j-geuter/DDEQs.

3as the target is not known, the number of free particles
is empirically chosen such that the total number of parti-
cles in Z matches the number of particles in the target on
average; for more details, refer to section 4.

https://github.com/j-geuter/DDEQs
https://github.com/j-geuter/DDEQs

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

4.1 Datasets

We train our model on two different datasets: MNIST
point clouds, a 2D dataset which features point clouds
of digits with up to 350 particles per sample, a train
split with 60, 000 samples, and a test split with 10, 000
samples, which we will call MNIST-pc; and on Model-
Net40, a 3D dataset which features point clouds of
objects of 40 different categories with up to nearly
200.000 particles per sample, a train split with 9, 843
samples, and a test split with 2, 468 samples. Since
samples with large numbers of particles are highly re-
dundant and too memory intense to handle, we employ
voxel based downscaling, such that each sample con-
tains no more than 800 particles, and dub the resulting
dataset ModelNet40-s. We normalize all samples from
both datasets to have zero mean and unit variance.
For point cloud completion, we select two particles per
(normalized) sample at random, and remove all par-
ticles in a radius r around them to create the partial
point clouds, where r = 0.6 for MNIST and r = 0.8
for ModelNet. We do not impose any restrictions on
the distance between the two selected particles. For
ModelNet40, while we use all classes for point cloud
classification, we select a subset of eight classes (air-
plane, bathtub, bowl, car, chair, cone, toilet, vase) for
point cloud completion. We call the resulting datasets
MNIST-pc-partial and ModelNet40-s-partial.

4.2 Implementation Details

We set the dimension of Z and the hidden dimension
of the encoders to 128. The latent dimension of the
bilinear model is 16. The cross-encoder has three lay-
ers, while the self-encoders have a single layer4. This
results in a total number of 1.17M parameters for the
DDEQ. The linear classifier for MNIST-pc has 1.3k pa-
rameters, the one for ModelNet40-s 5k; the invertible
coupling layer for point cloud completion has 16.6k.
For classification tasks, we set the number of particles
in Z to 10. Note that in theory, for classification, even
the edge case of just a single particle in Z works, which
would effectively reduce the inner loop to standard gra-
dient descent. We found that increasing this number
to 10 slightly improves performance, but further in-
creasing it was detrimental. This shows that a DDEQ
forward pass with a discretized MMD flow can be help-
ful even in the classification setting. An ablation study
of this hyperparameter can be found in Appendix D.2.
For point cloud completion, we set the number of free
particles to be 27.5% of the number of particles in the
input, which equals the average amount of particles

4For classification on MNIST-pc, we reduce the num-
ber of layers in the cross-encoder from three to one, which
reduces the number of parameters to 776k, since the per-
formance gains of more layers are marginal.

Table 1: Accuracies on Point Cloud Classification

Models (size) MNIST-pc ModelNet40-s

PointNet (1.6M) 97.5 77.3
PT (3.5M) 98.6 79.2

DDEQ (776k/1.2M) 98.1 78.2

removed to create the partial input point clouds.

We train the model for 5 epochs on both MNIST
datasets, and for 20 epochs on ModelNet40-s for clas-
sification and 100 epochs for completion (since we se-
lect just eight classes for point cloud completion, the
dataset contains only 2868 samples), both with a batch
size of 64. To batch together samples with varying
numbers of particles, we adequately pad samples with
zeros and mask out gradients. For the inner loop, we
use SGD with a learning rate of 5 and 200 iterations.
The outer loop uses an Adam optimizer with initial
learning rate 0.001, and a scheduler which reduces the
learning rate by 90% after 40% resp. 80% of the total
epochs. On MNIST-pc, we also reduce the number of
layers in the cross-encoder from 3 to 1, as additional
layers only provide marginal performance gains. We
implement DDEQs with the torchdeq library [Geng
and Kolter, 2023], which utilizes phantom gradients
[Geng et al., 2021] for the backward pass.

Point Cloud Classification. We compare against
PointNet [Qi et al., 2017a] and Point Transformer (PT)
[Zhao et al., 2021], both of which we train from scratch
on our datasets with the same number of epochs and
with the same learning rate scheduler as DDEQs.
Other hyperparameters, such as the optimizers, are
taken from the original papers. The top-1 accuracies
on both datasets are reported in Table 1. We see that
DDEQs achieve results almost identical to PointNet,
and only marginally worse than PT, while being sig-
nificantly more parameter efficient.

Table 2: Comparison of W2 distances for DDEQ and
PCN under noisy training data for MNIST-pc-partial.

Noisy Particles 0% 5% 20% 80%

W2 (DDEQ) 0.33 0.17 0.19 0.33
W2 (PCN) 0.49 0.51 0.49 0.53

Point Cloud Completion. We compare DDEQs
against PCN [Yuan et al., 2018] with a grid size of one
and 256 points per sample on MNIST-pc-partial and
768 on ModelNet40-s-partial, which yielded the best
results amongst a range of hyperparameters. Again,
we trained this baseline on our dataset from scratch

https://www.kaggle.com/datasets/cristiangarcia/pointcloudmnist2d
https://www.kaggle.com/datasets/cristiangarcia/pointcloudmnist2d
https://www.kaggle.com/datasets/balraj98/modelnet40-princeton-3d-object-dataset/data
https://www.kaggle.com/datasets/balraj98/modelnet40-princeton-3d-object-dataset/data

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Figure 4: MNIST-pc-partial samples.

for the same number of epochs as DDEQs5. While
DDEQs allow for input batches to be padded with
zeros, most existing frameworks require all inputs to
have the same number of points, hence we filled input
batches for PCN with randomly sampled points of the
input point clouds which improves performance. Sam-
ple results can be seen in Figures 4 and 5; additional
samples and results can be found in Appendix D.8. As
we can see from the Figures, the DDEQ tends to be
good at moving free particles to the right locations, but
is having trouble spreading them out evenly in those
locations. PCN, on the other hand, spreads out par-
ticles very evenly, but tends to produce outputs that
are too diffuse, and clearly do not faithfully recover
the partial input. We observed that DDEQs benefit
from adding Gaussian noise from N (0, 1) to a small
portion of the input points, as can be seen in Table
2, where we quantitatively compare DDEQs and PCN
in terms of the Wasserstein-2 loss over varying nois-
ing schedules. To make the comparison more fair, we
compute the Wasserstein-2 distance only over the free
particles for DDEQs, whereas we compute it over all
particles for PCN6. We hypothesize this makes train-
ing more robust, and consequently we trained DDEQs
on 5% noisy samples for point cloud completion.

5We also tried comparing against PMP-Net [Wen et al.,
2021] and PMP-Net++ [Wen et al., 2022] using the official
GitHub repo, but could not get it to produce predictions
that differ from the input point cloud on our dataset, thus
we are not including it.

6Arguably, this comparison slightly favours PCN, as the
loss for PCN is also averaged over particles that “corre-
spond” to input particles in some way, but it is more fair
than averaging over all particles for DDEQs, as DDEQs
retain the input point cloud by design.

Figure 5: ModelNet40-s-partial samples.

5 CONCLUSION

In this paper, we presented DDEQs, a type of Deep
Equilibrium Model which features discrete probabil-
ity measure inputs and outputs, and provide a rig-
orous theoretical framework of the model. We de-
rived a suitable forward pass, which we implement
using a discretized Wasserstein gradient flow on the
squared MMD between a latent sample and its push-
forward under the neural network. We carefully ana-
lyzed the forward pass, and proposed a suitable net-
work architecture based on multi-head attention en-
coders. Through experiments on point cloud classi-
fication and point cloud completion, we showed the
versatility of the proposed approach, and how to ap-
ply it end-to-end on these tasks. Our model achieves
competitive results on challenging tasks, such as point
cloud classification on ModelNet40, while being signif-
icantly more parameter efficient. However, a more ex-
tensive empirical analysis would be instructive, and we
believe that through more carefully designed architec-
tures and hyperparameters, DDEQs can successfully
be applied to a wide range of applications. One of the
main drawbacks is the slow convergence of the forward
pass, as is typical for MMD flows. Future research in-
cludes applying DDEQs to other tasks that require
measure-to-measure learning, and to derive methods
to speed up the forward pass.

ACKNOWLEDGEMENTS

CB acknowledges the support of ANR PEPR PDE-AI.
JG and DAM acknowledge support from the Kempner
Institute, the Aramont Fellowship Fund, and the FAS
Dean’s Competitive Fund for Promising Scholarship.

https://github.com/diviswen/PMP-Net/tree/main

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

References

Fabian Altekrüger, Johannes Hertrich, and Gabriele
Steidl. Neural Wasserstein Gradient Flows for Dis-
crepancies with Riesz Kernels. In International Con-
ference on Machine Learning, 2023.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré.
Gradient flows: in metric spaces and in the space of
probability measures. Springer Science & Business
Media, 2008.

Brandon Amos, Giulia Luise, Samuel Cohen, and Iev-
gen Redko. Meta Optimal Transport. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pages 791–
813. PMLR, 23–29 Jul 2023.

Michael Arbel, Anna Korba, Adil Salim, and Arthur
Gretton. Maximum Mean Discrepancy Gradient
Flow. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. Layer Normalization. arXiv preprint
arXiv:1607.06450, 2016.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep
equilibrium models. Advances in neural information
processing systems, 32, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Mul-
tiscale deep equilibrium models. Advances in neural
information processing systems, 33:5238–5250, 2020.

Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Sta-
bilizing Equilibrium Models by Jacobian Regular-
ization. In International Conference on Machine
Learning, 2021.

Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico
Kolter. Deep Equilibrium Optical Flow Estima-
tion. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
620–630, 2022.

Adrien Blanchet and Jérôme Bolte. A family of func-
tional inequalities: Lojasiewicz inequalities and dis-
placement convex functions. Journal of Functional
Analysis, 275(7):1650–1673, 2018.

Mathieu Blondel and Vincent Roulet. The ele-
ments of differentiable programming. arXiv preprint
arXiv:2403.14606, 2024.

Clément Bonet, Théo Uscidda, Adam David, Pierre-
Cyril Aubin-Frankowski, and Anna Korba. Mir-
ror and Preconditioned Gradient Descent in Wasser-
stein Space. In Advances in Neural Information Pro-
cessing Systems, 2024.

Clément Bonet, Lucas Drumetz, and Nicolas Courty.
Sliced-Wasserstein Distances and Flows on Cartan-
Hadamard Manifolds. Journal of Machine Learning
Research, 26(32):1–76, 2025.

Benôıt Bonnet. A Pontryagin Maximum Principle in
Wasserstein spaces for constrained optimal control
problems. ESAIM: Control, Optimisation and Cal-
culus of Variations, 25:52, 2019.

Guillaume Carlier, Lénäıc Chizat, and Maxime
Laborde. Displacement smoothness of entropic opti-
mal transport. ESAIM: Control, Optimisation and
Calculus of Variations, 30:25, 2024.

Valérie Castin, Pierre Ablin, and Gabriel Peyré. How
Smooth Is Attention? In International Conference
of Machine Learning, 2024.

Clémentine Chazal, Anna Korba, and Francis Bach.
Statistical and Geometrical properties of regularized
Kernel Kullback-Leibler divergence. In Advances in
Neural Information Processing Systems, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information process-
ing systems, 31, 2018.

Yihong Chen, Xiangxiang Xu, Yao Lu, Pontus Stene-
torp, and Luca Franceschi. Jet Expansions of Resid-
ual Computation. arXiv preprint arXiv:2410.06024,
2024a.

Zonghao Chen, Aratrika Mustafi, Pierre Glaser,
Anna Korba, Arthur Gretton, and Bharath K
Sriperumbudur. (De)-regularized Maximum Mean
Discrepancy Gradient Flow. arXiv preprint
arXiv:2409.14980, 2024b.

Sinho Chewi, Jonathan Niles-Weed, and Philippe
Rigollet. Statistical optimal transport. arXiv
preprint arXiv:2407.18163, 2024.

Lenaic Chizat and Francis Bach. On the
Global Convergence of Gradient Descent for Over-
parameterized Models using Optimal Transport.
Advances in Neural Information Processing Sys-
tems, 31, 2018.

Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang.
Scalable Wasserstein Gradient Flow for Generative
Modeling through Unbalanced Optimal Transport.
In Forty-first International Conference on Machine
Learning, 2024.

Marco Cuturi. Sinkhorn distances: Lightspeed com-
putation of optimal transport. Advances in Neural
Information Processing Systems, 26, 2013.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and
Thomas Moreau. A framework for bilevel optimiza-
tion that enables stochastic and global variance re-

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

duction algorithms. Advances in Neural Information
Processing Systems, 35:26698–26710, 2022.

Laurent Dinh, David Krueger, and Yoshua Bengio.
Nice: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516, 2014.

Sever Silvestru Dragomir. Some Gronwall type in-
equalities and applications. Science Direct Working
Paper, (S1574-0358):04, 2003.

Chao Du, Tianbo Li, Tianyu Pang, Shuicheng Yan,
and Min Lin. Nonparametric Generative Modeling
with Conditional Sliced-Wasserstein Flows. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
8565–8584. PMLR, 23–29 Jul 2023.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey
Kroshnin. Computational Optimal Transport:
Complexity by Accelerated Gradient Descent Is Bet-
ter Than by Sinkhorn’s Algorithm. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning
Research, pages 1367–1376. PMLR, 10–15 Jul 2018.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca,
Armin Askari, and Alicia Tsai. Implicit Deep Learn-
ing. SIAM Journal on Mathematics of Data Science,
3(3):930–958, 2021.

Jiaojiao Fan, Qinsheng Zhang, Amirhossein Taghvaei,
and Yongxin Chen. Variational Wasserstein gradi-
ent flow. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
6185–6215. PMLR, 17–23 Jul 2022.

Ben Fei, Weidong Yang, Wen-Ming Chen, Zhijun Li,
Yikang Li, Tao Ma, Xing Hu, and Lipeng Ma. Com-
prehensive Review of Deep Learning-Based 3D Point
Cloud Completion Processing and Analysis. IEEE
Transactions on Intelligent Transportation Systems,
23(12):22862–22883, December 2022. ISSN 1558-
0016. doi: 10.1109/tits.2022.3195555.

Takashi Furuya, Maarten V de Hoop, and Gabriel
Peyré. Transformers are Universal In-context Learn-
ers. arXiv preprint arXiv:2408.01367, 2024.

Mateusz Gabor, Tomasz Piotrowski, and Renato LG
Cavalcante. Positive concave deep equilibrium mod-
els. arXiv preprint arXiv:2402.04029, 2024.

Zhengyang Geng and J Zico Kolter. Torchdeq: A li-
brary for deep equilibrium models. arXiv preprint
arXiv:2310.18605, 2023.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen
Wang, and Zhouchen Lin. On Training Implicit
Models. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, 2021.

Jonathan Geuter, Gregor Kornhardt, Ingimar Tomas-
son, and Vaios Laschos. Universal Neural Optimal
Transport. arXiv preprint arXiv:2212.00133, 2025.

Pierre Glaser, Michael Arbel, and Arthur Gretton.
KALE flow: A relaxed KL gradient flow for prob-
abilities with disjoint support. Advances in Neu-
ral Information Processing Systems, 34:8018–8031,
2021.

Arthur Gretton, Karsten M Borgwardt, Malte J
Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine
Learning Research, 13(1):723–773, 2012.

Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-
mâché approach to learning 3d surface generation.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 216–224, 2018.

Paul Hagemann, Johannes Hertrich, Fabian Al-
tekrüger, Robert Beinert, Jannis Chemseddine, and
Gabriele Steidl. Posterior Sampling Based on Gra-
dient Flows of the MMD with Negative Distance
Kernel. In The Twelfth International Conference on
Learning Representations, 2024.

Johannes Hertrich, Christian Wald, Fabian Al-
tekrüger, and Paul Hagemann. Generative Sliced
MMD Flows with Riesz Kernels. In The Twelfth
International Conference on Learning Representa-
tions, 2024.

Tom Huix, Anna Korba, Alain Durmus, and Eric
Moulines. Theoretical Guarantees for Variational
Inference with Fixed-Variance Mixture of Gaus-
sians. International Conference on Machine Learn-
ing, 2024.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel
Optimization: Convergence Analysis and Enhanced
Design. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 4882–4892. PMLR,
18–24 Jul 2021.

Ivan Kobyzev, Simon J.D. Prince, and Marcus A.
Brubaker. Normalizing Flows: An Introduction and
Review of Current Methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(11):
3964–3979, November 2021. ISSN 1939-3539. doi:
10.1109/tpami.2020.2992934.

Marc Lambert, Sinho Chewi, Francis Bach, Silvère
Bonnabel, and Philippe Rigollet. Variational infer-

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

ence via Wasserstein gradient flows. Advances in
Neural Information Processing Systems, 35:14434–
14447, 2022.

Nicolas Lanzetti, Saverio Bolognani, and Florian
Dörfler. First-Order Conditions for Optimization in
the Wasserstein Space. SIAM Journal on Mathe-
matics of Data Science, 7(1):274–300, 2025.

John M. Lee. Introduction to Smooth Manifolds. Grad-
uate Texts in Mathematics. Springer New York, NY,
1 edition, March 2003. ISBN 978-0-387-21752-9. doi:
10.1007/978-0-387-21752-9. Published: 09 March
2013 (eBook).

John M. Lee. Introduction to Riemannian Manifolds.
Graduate Texts in Mathematics. Springer Cham, 2
edition, January 2019. ISBN 978-3-319-91754-2. doi:
10.1007/978-3-319-91755-9. Published: 14 January
2019 (Hardcover), Published: 05 August 2021 (Soft-
cover).

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Ko-
siorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based
permutation-invariant neural networks. In Interna-
tional conference on machine learning, pages 3744–
3753. PMLR, 2019.

Bernadette Lessel and Thomas Schick. Differentiable
maps between Wasserstein spaces. arXiv preprint
arXiv:2010.02131, 2020.

Zenan Ling, Longbo Li, Zhanbo Feng, Yixuan Zhang,
Feng Zhou, Robert C Qiu, and Zhenyu Liao. Deep
Equilibrium Models are Almost Equivalent to Not-
so-deep Explicit Models for High-dimensional Gaus-
sian Mixtures. arXiv preprint arXiv:2402.02697,
2024.

Antoine Liutkus, Umut Simsekli, Szymon Majewski,
Alain Durmus, and Fabian-Robert Stöter. Sliced-
Wasserstein flows: Nonparametric generative mod-
eling via optimal transport and diffusions. In In-
ternational Conference on Machine Learning, pages
4104–4113. PMLR, 2019.

Jiageng Mao, Shaoshuai Shi, Xiaogang Wang, and
Hongsheng Li. 3D object detection for autonomous
driving: A comprehensive survey. International
Journal of Computer Vision, 131(8):1909–1963,
2023.

Pierre Marion, Anna Korba, Peter Bartlett, Mathieu
Blondel, Valentin De Bortoli, Arnaud Doucet, Felipe
Llinares-López, Courtney Paquette, and Quentin
Berthet. Implicit Diffusion: Efficient Optimiza-
tion through Stochastic Sampling. arXiv preprint
arXiv:2402.05468, 2024.

Takuo Matsubara. Wasserstein gradient boosting: A
framework for distribution-valued supervised learn-

ing. In Advances in Neural Information Processing
Systems, 2024.

Leland McInnes, John Healy, and James Melville.
UMAP: Uniform Manifold Approximation and Pro-
jection for Dimension Reduction. arXiv preprint
arXiv:1802.03426, 2018.

Sebastian Neumayer, Viktor Stein, and Gabriele
Steidl. Wasserstein Gradient Flows for Moreau
Envelopes of f-Divergences in Reproducing Kernel
Hilbert Spaces. arXiv preprint arXiv:2402.04613,
2024.

Felix Otto. The geometry of dissipative evolution
equations: The porous medium equation. Commu-
nications in Partial Differential Equations, 26(1-2):
101–174, 2001.

Gabriel Peyré, Marco Cuturi, et al. Computational op-
timal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11
(5-6):355–607, 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances
in neural information processing systems, 30, 2017b.

Zaccharie Ramzi, Pierre Ablin, Gabriel Peyré, and
Thomas Moreau. Test like you Train in Implicit
Deep Learning. arXiv preprint arXiv:2305.15042,
2023.

Filippo Santambrogio. Optimal transport for applied
mathematicians. Birkäuser, NY, 55(58-63):94, 2015.

Filippo Santambrogio. {Euclidean, metric, and
Wasserstein} gradient flows: an overview. Bulletin
of Mathematical Sciences, 7:87–154, 2017.

Dino Sejdinovic, Bharath Sriperumbudur, Arthur
Gretton, and Kenji Fukumizu. Equivalence of
distance-based and RKHS-based statistics in hy-
pothesis testing. The annals of statistics, pages
2263–2291, 2013.

James Thornton and Marco Cuturi. Rethinking initial-
ization of the Sinkhorn algorithm. In International
Conference on Artificial Intelligence and Statistics,
pages 8682–8698. PMLR, 2023.

Laurens van der Maaten and Geoffrey Hinton. Visual-
izing Data using t-SNE. Journal of Machine Learn-
ing Research, 9(86):2579–2605, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Kaiser, and Illia Polosukhin. Attention is All you
Need. In I. Guyon, U. Von Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates,
Inc., 2017.

Santosh Vempala and Andre Wibisono. Rapid con-
vergence of the unadjusted Langevin algorithm:
Isoperimetry suffices. Advances in neural informa-
tion processing systems, 32, 2019.

Cédric Villani. Topics in optimal transportation, vol-
ume 58. American Mathematical Soc., 2008.

Xin Wen, Peng Xiang, Zhizhong Han, Yan-Pei Cao,
Pengfei Wan, Wen Zheng, and Yu-Shen Liu. Pmp-
net: Point cloud completion by learning multi-
step point moving paths. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 7443–7452, 2021.

Xin Wen, Peng Xiang, Zhizhong Han, Yan-Pei Cao,
Pengfei Wan, Wen Zheng, and Yu-Shen Liu. PMP-
Net++: Point Cloud Completion by Transformer-
Enhanced Multi-step Point Moving Paths. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 45(1):852–867, 2022.

Andre Wibisono. Sampling as optimization in the
space of measures: The Langevin dynamics as a
composite optimization problem. In Conference on
Learning Theory, pages 2093–3027. PMLR, 2018.

Ezra Winston and J Zico Kolter. Monotone operator
equilibrium networks. Advances in neural informa-
tion processing systems, 33:10718–10728, 2020.

Zhenzhang Ye, Gabriel Peyré, Daniel Cremers, and
Pierre Ablin. Enhancing Hypergradients Estima-
tion: A Study of Preconditioning and Reparame-
terization. In International Conference on Artificial
Intelligence and Statistics, pages 955–963. PMLR,
2024.

Wentao Yuan, Tejas Khot, David Held, Christoph
Mertz, and Martial Hebert. PCN: Point comple-
tion network. In 2018 international conference on
3D vision (3DV), pages 728–737. IEEE, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neu-
ral information processing systems, 30, 2017.

Valentin F Zaitsev and Andrei D Polyanin. Handbook
of exact solutions for ordinary differential equations.
Chapman and Hall/CRC, 2002.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr,
and Vladlen Koltun. Point transformer. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 16259–16268, 2021.

Haoyi Zhu, Yating Wang, Di Huang, Weicai Ye,
Wanli Ouyang, and Tong He. Point Cloud Mat-
ters: Rethinking the Impact of Different Obser-
vation Spaces on Robot Learning. arXiv preprint
arXiv:2402.02500, 2024a.

Huminhao Zhu, Fangyikang Wang, Chao Zhang, Han-
bin Zhao, and Hui Qian. Neural Sinkhorn Gradient
Flow. arXiv preprint arXiv:2401.14069, 2024b.

Hanna Ziesche and Leonel Rozo. Wasserstein gradient
flows for optimizing Gaussian mixture policies. Ad-
vances in Neural Information Processing Systems,
36, 2023.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Supplementary Materials

A BACKGROUND

In this section, we provide background on some of the mathematical concepts used in the paper. In Section
A.1, we recall two definitions from measure theory used throughout the paper; in Section A.2, we recall some
of the basic definitions from OT (see [Santambrogio, 2015, Villani, 2008] for more details). Section A.3 defines
the Wasserstein distance and MMD between probability measures, and in Section A.4 we define Wasserstein
gradient flows (see [Villani, 2008, Chewi et al., 2024, Lee, 2019, 2003] for more details).

A.1 Measure Theory

All functions and sets used throughout the paper are considered to be Borel measurable, and all measures are
considered to be Borel measures, without explicitly mentioning it; e.g., when we say “measurable”, we mean
Borel measurable.

Definition A.1 (Space of Measures with bounded second Moments). Denote by P(Rd) the space of probability
measures over Rd with respect to the Borel-σ-algebra over Rd. Then the space of probability measures of bounded
second moments, denoted by P2(Rd) ⊂ P(Rd), contains all measures µ ∈ P(Rd) such that∫

∥x∥2dµ(x) <∞.

Definition A.2 (Pushforward). Let µ ∈ P2(Rd), and F : Rd → Rd a (measurable) function. Then the
pushforward of µ under F , denoted by F#µ, is a probability measure defined by

F#µ(B) = µ
(
F−1(B)

)
for measurable B ⊂ Rd.

A.2 Optimal Transport

In this section, we define the optimal transport problem on Rd. Let µ, ν ∈ P2(Rd).

Definition A.3 (Coupling). The set of couplings between µ and ν is

Π(µ, ν) = {γ ∈ P2(Rd × Rd), π1
#γ = µ, π2

#γ = ν}

where πi denotes the projection on the ith coordinate.

Definition A.4 (Optimal Transport Problem). Let c : Rd ×Rd → R be a cost function. The optimal transport
problem is defined as:

inf
γ∈Π(µ,ν)

∫
c(x, y) dγ(x, y) (6)

The infimum in (6) is called the transport cost, and the minimizer γ, if it exists, the optimal transport plan.

Under minimal assumptions on c, such as lower semicontinuity and boundedness from below, one can prove
existence of an optimal transport plan; this result extends to the more general case of Polish spaces as well
[Villani, 2008].

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

A.3 Discrepancies between Probability Measures

Different discrepancies can be used to compare probability measures, and each comes with its own advantages
and disadvantages, e.g. from a computational point of view or in terms of their theoretical properties. In this
work, we focus mainly on two discrepancies: the Wasserstein distance [Villani, 2008] and the Maximum Mean
Discrepancy (MMD) [Gretton et al., 2012].

Definition A.5 (Wasserstein Distance). For 1 ≤ p < ∞, the Wasserstein-p distance Wp is the pth root of the
transport cost of the optimal transport problem (6) with cost c(x, y) = ∥x− y∥pp, i.e.

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
∥x− y∥pp dγ(x, y).

It can be shown that Wasserstein distances are indeed distances on Pp(Rd). In particular, P2(Rd) endowed with
W2, denoted by (P2(Rd),W2) and called the Wasserstein space, has a Riemannian structure [Otto, 2001], which
allows defining notions such as tangent spaces or gradients. However, it is costly to compute in practice. In this
work, we leverage the Riemannian structure of the Wasserstein space to minimize the MMD between probability
distributions, which we define now.

Definition A.6 (Reproducing Kernel Hilbert Space). A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert
space H of functions from a space X to R in which point evaluations are continuous linear functions. By the Riesz
representation theorem, this is equivalent to the existence of a symmetric, positive definite kernel k : X ×X → R
such that

f(x) = ⟨f, k(x, ·)⟩H ∀f ∈ H.

Definition A.7 (Maximum Mean Discrepancy). Let H be a RKHS with kernel k : Rd ×Rd → R. The MMD is
defined as [Gretton et al., 2012]

MMD(µ, ν) =

∫∫
k(x, y) d(µ− ν)(x)d(µ− ν)(y)

= sup
f, ∥f∥H≤1

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ .
The MMD can be shown to be a distance if and only if the kernel mean embedding µ 7→

∫
k(x, ·)dµ(x) is

injective, which is e.g. the case for the Gaussian kernel k(x, y) = e−
∥x−y∥2

2σ2 [Chewi et al., 2024]. The Riesz
kernel k(x, y) = −∥x− y∥ used in this work is not positive definite, hence does not define an RKHS and is thus
technically not an MMD. However, it can be shown to be a distance [Sejdinovic et al., 2013].

The MMD between discrete probability measures can be evaluated in O(n2), where n is the number of particles.
In contrast, computing the Wasserstein distance requires O(n3 log n) computations [Peyré et al., 2019].

A.4 Wasserstein Gradient Flows

In this section, we recall some definitions and properties of Wasserstein gradient flows. As (P2(Rd),W2) is a
metric space that admits a quasi-Riemannian structure [Otto, 2001] (i.e., there exists a natural scalar product
in each tangent space, even though it is not a Riemannian manifold per se), we can define a tangent space at
µ ∈ P2(Rd) as

TµP2(Rd) = {∇ψ | ψ : Rd → R compactly supported, smooth}
L2(µ)

⊂ L2(µ), (7)

where the closure is taken in L2(µ), see [Ambrosio et al., 2008, Definition 8.4.1]. Moreover, the tangent space is
endowed with the scalar product

⟨v, w⟩µ :=

∫
⟨v, w⟩dµ

for v, w ∈ TµP2(Rd). Intuitively, the vector fields in the tangent space can be thought of as pointing into the
direction that mass moves to at any point x ∈ Rd.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

One can show that the Wasserstein distance is indeed the distance induced by this structure, i.e. that the
squared Wasserstein distance between two distributions µ0, µ1 ∈ P2(Rd) is equal to the minimum length of a
constant-speed geodesic connecting µ0 and µ1 (Benamou-Brenier dynamic formulation):

W 2
2 (µ0, µ1) = inf

{∫ 1

0

∥vt∥2µt
dt
∣∣∣ (µt, vt) solves ∂tµt + div(µtvt) = 0

}
. (8)

Here,
∂tµt + div(µtvt) = 0 (9)

is the so-called continuity equation, which is satisfied whenever a path (µt)t ⊂ P2(Rd) evolves according to a
time vector field (vt)t, i.e. whenever for Xt ∼ µt, it holds that

Ẋt = vt(Xt).

Hence, the integral in equation (8) equals the length of a geodesic (µt)t which connects µ0 to µ1 along a vector
field (vt)t. In general, the vector field (vt)t satisfying the continuity equation for (µt)t is not unique. However,
we will see below that there exists a unique such vector field which lies in the tangent space of µt at all times.

Now, let G : P2(Rd)→ R be a functional.

Let us introduce the notion of sub- and super-differentiability on the Wasserstein space (see e.g. [Bonnet, 2019,
Lanzetti et al., 2025]).

Definition A.8. Let µ ∈ P2(Rd). A map ξ ∈ L2(µ) belongs to the sub-differential ∂−G(µ) of F at µ if for all
ν ∈ P2(Rd),

G(ν) ≥ F(µ) + sup
γ∈Πo(µ,ν)

∫
⟨ξ(x), y − x⟩ dγ(x, y) + o

(
W2(µ, ν)

)
,

with Πo(µ, ν) the set of optimal couplings between µ and ν. Similarly, ξ ∈ L2(µ) belongs to the super-differential
∂+G(µ) of G at µ if −ξ ∈ ∂−(−G)(µ).

We also say that a functional is Wasserstein differentiable if it admits sub- and super-differentials which coincide.

Definition A.9. G is called Wasserstein differentiable at µ ∈ P2(Rd) if ∂−G(µ) ∩ ∂+G(ν) ̸= ∅. In this case, we
say that ∇WG(µ) ∈ ∂−G(µ) ∩ ∂+G(µ) is a Wasserstein gradient of G at µ, and it satisfies for any ν ∈ P2(Rd),
γ ∈ Πo(µ, ν),

G(ν) = G(µ) +

∫
⟨∇WG(µ)(x), y − x⟩ dγ(x, y) + o

(
W2(µ, ν)

)
. (10)

If a Wasserstein gradient exists, then there is always a unique Wasserstein gradient in the tangent space TµP2(Rd)
[Lanzetti et al., 2025, Proposition 2.5], and we restrict to it in practice. Examples of Wasserstein differentiable
functionals include potential energies G(µ) =

∫
V dµ or interaction energies G(µ) = 1

2

∫∫
W (x, y) dµ(x)dµ(y) for

V : Rd → R and W : Rd × Rd → R differentiable and smooth, see [Lanzetti et al., 2025, Section 2.4].

We also recall the following result of Lanzetti et al. [2025], which states that the Wasserstein gradients can be
used for the Taylor expansion of functionals for any coupling.

Proposition A.10 (Proposition 2.6 in [Lanzetti et al., 2025]). Let µ, ν ∈ P2(Rd), γ ∈ Π(µ, ν) any coupling and
let F : P2(Rd)→ R be Wasserstein differentiable at µ with Wasserstein gradient ∇WF(µ) ∈ TµP2(Rd). Then,

F(ν) = F(µ) +

∫
⟨∇WF(µ)(x), y − x⟩ dγ(x, y) + o

(√∫
∥x− y∥22 dγ(x, y)

)
.

It turns out that under suitable regularity assumptions, the Wasserstein gradient coincides with the gradient of
the first variation of the functional [Chewi et al., 2024].

Definition A.11 (First Variation). If it exists, the first variation of G at µ, denoted by δG
δµ (µ) : Rd → R, is

defined as the unique map such that

lim
ϵ→0

G(µ+ ϵχ)− G(µ)

ϵ
=

∫
δG
δµ

(µ)dχ

for all perturbations χ such that
∫

dχ = 0.

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Proposition A.12 (Lemma 10.4.1 in [Ambrosio et al., 2008]). Assume that µ is absolutely continuous with
respect to the Lebesgue measure, and that its density lies in C1(Rd). Also assume that G(µ) < ∞. Then the
Wasserstein gradient of G at µ is equal to the gradient of the first variation at µ, i.e.:

∇WG(µ) = ∇δG
δµ

(µ).

Moreover, for any curve (µt)t≥0 in P2(Rd) with associated tangent vectors (vt)t≥0, it holds:

∂tG(µt) = ⟨∇WG(µt), vt⟩µt . (11)

Indeed, applying Proposition A.10 between µt and (Id + svt)#µt for any s > 0, with γ = (Id, Id + svt)#µt ∈
Π
(
µt, (Id + svt)#µt

)
, we get

G
(
(Id + svt)#µt

)
− G(µs)

s
=

∫
⟨∇WG(µt)(x), vt(x)⟩ dµt(x) + o(1) −−−→

s→0
⟨∇WG(µt), vt⟩µt ,

and thus ∂tG(µt) = ⟨∇WG(µt), vt⟩µt .

Definition A.13 (Wasserstein Gradient Flow). A Wasserstein gradient flow (WGF) of G is a path (µt)t≥0 ⊂
P2(Rd) starting at some µ0 and moving along the negative Wasserstein gradient of G. In terms of the continuity
equation, this reads (in the distributional sense)

∂tµt + div
(
µtvt

)
= 0,

where −vt is a subgradient of G at µt, i.e. for all ν ∈ P2(Rd),

G(ν) ≥ G(µt) + sup
γ∈Πo(µt,ν)

∫
⟨−vt(x), y − x⟩ dγ(x, y) + o

(
W2(µt, ν)

)
,

with Πo(µ, ν) the set of optimal couplings.

Note that the velocity field generating the path t 7→ µt in Definition A.13 is not unique. However, the Wasserstein
gradient ∇WG(µt) is the unique element amongst all such velocity fields (vt)t≥0 which lies in the tangent space
of µt, i.e. for which vt ∈ Tµt

P2(Rd) holds for all t.

We now recall the Wasserstein gradient of the MMD to a fixed target measure, which can be written as a sum
of potential and interaction energies, see [Arbel et al., 2019] for more details.

Proposition 7. Let ν ∈ P2(Rd), and define F(µ) = 1
2MMD(µ, ν)2 for µ ∈ P2(Rd). Then, F is Wasserstein

differentiable at any µ ∈ P2(Rd), with Wasserstein gradient

∇WF(µ) =

∫
∇1k(·, y) dµ(y)−

∫
∇1k(·, z) dν(z),

where ∇1 denotes the gradient w.r.t. the first argument.

B PROOFS

B.1 Wasserstein Gradient

Proposition 1. Let µ ∈ P2(Rp), F : P2(Rp) → R, T : Rp → Rp ∈ L2(µ) a µ-almost everywhere differentiable
map with ∇T bounded in operator norm, i.e. supx ∥∇T (x)∥op < +∞, and define F̃(µ) := F(T#µ). Up to a set

of measure zero, if the Wasserstein gradient of F at T#µ exists, then the Wasserstein gradient of F̃ at µ also
exists, and it holds:

∇W F̃(µ) = (∇T) · ∇WF(T#µ) ◦ T = ∇
(
δF
δµ

(T#µ) ◦ T
)
.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Proof. Let µ, ν ∈ P2(Rp) and γ ∈ Πo(µ, ν) an optimal coupling between µ and ν. Let γ̃ = (T, T)#γ ∈
Π(T#µ, T#ν) a coupling between T#µ and T#ν. Since F is Wasserstein differentiable at T#µ, we have by
Proposition A.10 [Lanzetti et al., 2025, Proposition 2.6]

F̃(ν)− F̃(µ) = F(T#ν)−F(T#µ)

=

∫
⟨∇WF(T#µ)(x), y − x⟩ dγ̃(x, y) + o

(√∫
∥x− y∥2 dγ̃(x, y)

)

=

∫
⟨∇WF(T#µ)(T (x)), T (y)− T (x)⟩ dγ(x, y) + o

(√∫
∥T (x)− T (y)∥2 dγ(x, y)

)
.

Then, by the Jet expansion which generalizes the Taylor expansion for maps T : Rp → Rp (see e.g. [Chen et al.,
2024a]), we have for x, y ∈ Rp,

T (y) = T (x) +∇T (x)T (y − x) +O(∥x− y∥2).

Assuming that the norm operator of ∇T is bounded, we can write ∥∇T (x)T (y − x)∥ ≤ ∥∇T (x)∥op∥y − x∥ ≤
M∥y − x∥ for M > 0, and thus

∫
∥∇T (x)T (y − x)∥2 dγ(x, y) ≤MW 2

2 (µ, ν). Therefore, we obtain

F̃(ν)− F̃(µ) =

∫
⟨∇WF(T#µ)(T (x)),∇T (x)T (y − x)⟩ dγ(x, y) + o

(
W2(µ, ν)

)
=

∫
⟨∇T (x)∇WF(T#µ)(T (x)), y − x⟩ dγ(x, y) + o

(
W2(µ, ν)

)
.

Thus, we conclude that ∇W F̃(µ) = (∇T) · ∇WF(T#µ) ◦ T by Definition A.9.

Corollary 2. Let G(µ) := 1
2MMD2 (µ, T#µ). Define the witness function fµ as

fµ :=

∫
k(·, y)dµ(y)−

∫
k(·, y)d(T#µ)(y),

where k : Rp × Rp → R is the kernel of the MMD, which ought to be differentiable almost everywhere. Then the
Wasserstein gradient of G exists, and is equal to

∇WG(µ) = ∇fµ −∇(fµ ◦ T). (12)

Proof. First, recall that for F(µ) = 1
2MMD2(µ, ν), ∇WF(µ) = ∇fµ,ν with fµ,ν =

∫
k(·, y) dµ(y)−

∫
k(·, z) dν(z)

[Arbel et al., 2019]; note that in this notation, fµ from above corresponds to fµ,T#µ.

For G(µ) = 1
2MMD2(µ, T#µ), we have ∇WG(µ) = ∇WG1(µ) + ∇WG2(µ) with G1(ν) = 1

2MMD2(ν, T#µ) and

G2(ν) = 1
2MMD2(T#ν, µ). Moreover,

∇WG1(ν) = ∇fν,T#µ

=

∫
∇1k(·, x′) dν(x′)−

∫
∇1k(·, y) d(T#µ)(y)

=

∫
∇1k(·, x′) dν(x′)−

∫
∇1k(·, T (y)) dµ(y).

Furthermore, using Proposition 1,

∇WG2(ν) = ∇T (∇fT#ν,µ ◦ T)

=

∫
(∇T)∇1k

(
T (·), T (x′)

)
dν(x′)−

∫
(∇T)∇1k

(
T (·), y

)
dµ(y)

= −∇(fµ,T#ν ◦ T)

Thus,
∇WG(µ)(x) = ∇WG1(µ)(x) +∇WG2(µ)(x)

= ∇fµ,T#µ(x)−∇(fµ,T#µ ◦ T)(x).

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

B.2 Implicit Gradient

In this section, we prove Theorem 3. A rigorous proof of this statement is more involved than one might
think, since it requires the derivative of a map F : P2(Rp) → P2(Rp), as well as of maps f : Rw → P2(Rp),
which we will carefully define in the following, following the construction in [Lessel and Schick, 2020] for maps
F : P2(Rp)→ P2(Rp), and extending it to maps f : Rw → P2(Rp).

Definition B.1 (Absolutely Continuous Curve). Let (X, d) be a metric space, and I ⊂ R an interval. A curve
γ : I → X is called absolutely continuous (a.c.), if there exists a function f ∈ L1(I) such that

d(γ(t), γ(s)) ≤
∫ 2

t

f(r)dr, ∀s, t ∈ I, t ≤ s.

We have seen in section A.4 that given a functional and its Wasserstein gradient, there exists a unique vector
field which induces this gradient (in the sense of the continuity equation) which lies in the tangent space. This
statement can be extended to any absolutely continuous curve µt of measures, cmp. [Lessel and Schick, 2020].

Definition B.2 (Tangent Couple). Let µt : [0, 1] → P2(Rp) be an absolutely continuous curve. Then there
exists a unique vector field vt : [0, 1]× Rp → Rp, such that (µt, vt) fulfills the continuity equation (9), and such
that vt lies in the tangent space TµtP2(Rp) for (almost all) times t. We will call such a couple (µt, vt) a tangent
couple.

Similarly, a tangent couple in Euclidean space is a pair (θt, ht), where θt : [0, 1]→ Rq, ht : [0, 1]→ Rq such that
ht = ∂tθt (which one could extend to a vector field ht that coincides with ∂tθt on the support of θt, which would
be a closer equivalent to the measure-theoretic definition above).

Definition B.3 (Absolutely Continuous Map). Let X = Rq or X = P2(Rp), and F : X → P2(Rd). F is called
absolutely continuous if for any a.c. curve µt in X, the curve F (µt) ⊂ P2(Rd) is a.c. (up to redefining it on a
set of measure 0).

We are now ready to define the differential of a map F : P2(Rp)→ P2(Rd) (which we will use for d = p), following
Definition 27 from [Lessel and Schick, 2020], which we can also naturally extend to functions F : Rq → P2(Rd).

Definition B.4 (Differentiable Map). Let X = Rq or X = P2(Rp), and F : X → P2(Rd). We say that F is
differentiable if there exist bounded linear maps DFµ : TµX → TF (µ)P2(Rd) such that for every tangent couple

(µt, vt) in X, the pair (F (µt), DFµt
(vt)) fulfills the continuity equation and is a tangent couple in P2(Rd).

As noted in [Lessel and Schick, 2020], it is difficult to define pointwise differentiability for maps between Wasser-
stein spaces, as tangent vector fields vt are not defined pointwise. Hence, to be precise, all pointwise statements
in the following will only hold almost everywhere.

We can now state the chain rule from [Lessel and Schick, 2020], and extend it to compositions between Euclidean
and Wasserstein space.

Proposition B.5 (Chain Rule). Let X = Rq or X = P2(Rq) and Z = Rd or Z = P2(Rd). Let G : X → P2(Rp),
and F : P2(Rp)→ Z be differentiable. Then F ◦G : X → Z is also differentiable, and

D(F ◦G)µ(v) = (DFG(µ) ◦DGµ)(v).

Proof. The case where both X and Z are Wasserstein spaces is proven in [Lessel and Schick, 2020, Corollary
33. 3)]. Note that the proof works exactly the same if X or Z is Euclidean using the right notion of tangent
couple.

Remark B.6. The result from Proposition B.5 recovers equation (11) in the case X = Z = R. To see this, let
F : P2(Rp)→ R be a Wasserstein differentiable map, (µt)t≥0 a curve in P2(Rp) with associated tangent vectors
(vt)t≥0. By (11) we get the chain rule

∂tF (µt) = ⟨∇WF (µt), vt⟩µt
.

Thus
(
F (µt), ⟨∇WF (µt), vt⟩µt

)
is a tangent couple on R, and by Definition B.4 this implies

DFµt
(vt) = ⟨∇WF (µt), vt⟩µt

.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Moreover, with G : t 7→ µt we get that DGt(vt) = vt is the differential of G at t by Definition B.4 since (µt, vt)
is a tangent couple. By Proposition B.5, we have

∂tF (µt) = D(F ◦G)t(vt) = DFG(t)

(
DGt(vt)

)
= DFµt(vt) = ⟨∇WF (µt), vt⟩µt , (13)

which is the formula from equation (11).

We are now ready to prove Theorem 3. In the following, the notation Dxf(x, y) will denote the derivative of f
w.r.t. its first argument at x.

Theorem 3. Let Y = Rn or Y = P2(Rn), ρ ∈ P2(Rd) and y ∈ Y be fixed, and µ∗
θ,ρ ∈ P2(Rp) be a fixed point of

F (·, θ) := Fθ(·, ρ) found by a given fixed point solver, where we assume that the fixed point solver Rw → P2(Rp) is
deterministic, i.e. given θ ∈ Rw, it finds a unique fixed point µ∗

θ,ρ differentiable w.r.t. θ. Let ℓ = ℓ(h(µ∗
θ,ρ, θ), y)

be the differentiable loss, where h : P2(Rd) × Rw → Y is differentiable. Assume further that F is differentiable,
and that Id − DµF is injective, where Id denotes the identity on Tµ∗

θ,ρ
P2(Rp), and where DµF is short-hand

notation for DµF (µ, θ), i.e. the derivative of F (µ, θ) w.r.t. µ. Then ℓ is differentiable w.r.t. θ, and it holds:

dℓ

dθ
= Dhℓ(h(µ∗

θ,ρ, θ), y) ◦
[
Dθh(µ∗

θ,ρ, θ) +Dµ∗
θ,ρ
h(µ∗

θ,ρ, θ) ◦
(

Id−Dµ∗
θ,ρ
F (µ∗

θ,ρ, θ
)−1

◦DθF (µ∗
θ,ρ, θ)

]
.

Proof. We have by the chain rule, Proposition B.5,

dℓ

dθ
= Dhℓ(h(µ∗

θ,ρ, θ), y) ◦
[
Dθh(µ∗

θ,ρ, θ) +Dµ∗
θ,ρ
h(µ∗

θ,ρ, θ) ◦Dθµ
∗
θ,ρ

]
. (14)

Furthermore, by the chain rule once more,

Dθµ
∗
θ,ρ = Dµ∗

θ,ρ
F (µ∗

θ,ρ, θ) ◦Dθµ
∗
θ,ρ +DθF (µ∗

θ,ρ, θ).

Using the fact that Id−Dµ∗
θ,ρ
F (µ∗

θ,ρ, θ) is injective, we can rewrite this as

Dθµ
∗
θ,ρ =

(
Id−Dµ∗

θ,ρ
F (µ∗

θ,ρθ)
)−1

◦DθF (µ∗
θ,ρ, θ).

Note that by definition, Dµ∗
θ,ρ
F (µ∗

θ,ρ, θ) is a map Tµ∗
θ,ρ
P2(Rp) 7→ TF (µ∗

θ,ρ,θ)
P2(Rp). However, since µ∗

θ,ρ =

F (µ∗
θ,ρ, θ), it can be viewed as a map Tµ∗

θ,ρ
P2(Rp) 7→ Tµ∗

θ,ρ
P2(Rp), hence the above expression makes sense.

Plugging this back into equation (14) yields the result.

An important question regarding Theorem 3 is under what conditions we get differentiability. In [Lessel and
Schick, 2020], a sufficient condition is given for pushforward maps. The study of the differentiability of non
pushforward maps is left for future works.

Proposition B.7. Let F : P2(Rp)→ P2(Rp) be such that F (µ) = f#µ for a function f : Rp → Rp that is proper
(i.e., preimages of compact sets are compact), smooth, and such that supx ∥Dfx∥ <∞. Then F is differentiable.

B.3 Loss Convergence

Let Fθ : P2(Rd) × P2(Rd) → P2(Rd) and Gθ,ρ(µ) = D
(
µ, Fθ(µ, ρ)

)
with D a differentiable divergence, assumed

symmetric for simplicity. Recall that we want to minimize L(θ) = Eρ,y

[
ℓ(h(µ∗

θ,ρ), y)
]

with ℓ : Y × Y → R a
differentiable loss function and µ∗

θ,ρ = arg minµ Gθ,ρ(µ).

We propose to solve this problem by alternating between a gradient descent step on θ and a Wasserstein gradient
descent step on Gθ,ρ. Inspired from [Dagréou et al., 2022, Marion et al., 2024], we discuss the convergence of this
bilevel optimization problem by analyzing the continuous process{

∀ρ ∈ P2(Rd), ∂µt,ρ = div
(
µt,ρ∇WGθt,ρ(µt,ρ)

)
dθt = −εt∇L(θt)dt,

with t 7→ εt a decreasing and positive curve. We analyze the convergence under several assumptions which we
describe now.

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Assumption B.8. For any ρ ∈ P2(Rd), θ ∈ Rw, the point fixes µ∗
θ,ρ are absolutely continuous with respect to

the Lebesgue measure and µ∗
θ,ρ ∝ e−Vρ(·,θ), with Vρ : Rp × Rw → Rp continuously differentiable and satisfying

∥∇2Vρ(x, θ)∥ ≤ CV .

The assumption of absolute continuity allows us to write ∇L(θ) = Eρ,y[Γ(µ∗
θ,ρ, θ)] with Γ(µ, θ) = ∇1ℓ

(
h(µ), y

)
·

Covµ

(
δh
δµ (µ)(Z),∇2Vρ(Z, θ)

)
. We also assume boundedness of Γ and Liptschitzness with respect to D.

Assumption B.9. For any µ, ν ∈ P2(Rd), θ ∈ Rw, ∥Γ(µ, θ) − Γ(ν, θ)∥ ≤ KΓD(µ, ν) (KΓ-Lipschitzness) and
∥Γ(µ, ν)∥ ≤ CΓ.

Now, let us define Fν(µ) := D(µ, ν). In this notation, ν is assumed to be fixed, meaning that in expressions like
∇WFν(µ), we differentiate only w.r.t. the argument µ. We assume that Fµ∗

θ,ρ
satisfies the Polyak- Lojasiewicz

(PL) inequality, which provides a sufficient condition for the convergence of the gradient flows of Fµ∗
θ,ρ

[Blanchet

and Bolte, 2018].

Assumption B.10. For all µ ∈ P2(Rd), Fµ∗
θ,ρ

(µ) ≤ CPL∥∇WFµ∗
θ,ρ

(µ)∥2L2(µ) for CPL ≥ 0 (PL inequality).

Additionally, we suppose ∥ δFµt

δµt
(µ∗

θt,ρ
)∥L2(µ∗

θt,ρ
) ≤ CF .

Finally, we also need to control the discrepancy between the directions given by the gradient of Gθ,ρ and the
gradients of Fµ∗

θ,ρ
towards the objective. We note that this assumption also depends on properties of the map

Fθ.

Assumption B.11. There exists some constant M > 0 such that for all t ≥ 0,

∥∇WGθt,ρ(µt)−∇WFµ∗
θt,ρ

(µt)∥2L2(µt)
≤Mεt. (15)

We now show the convergence of the average of the objective gradients, which is the best we can hope for since
we do not make any convexity assumptions.

Theorem B.12. Take εt = min(1, t−
1
2), and assume Assumptions B.8, B.9, B.10 and B.11. Then for T > 0

and some constant c > 0,

1

T

∫ T

0

∥∇L(θt)∥2 dt ≤ c (log T)2√
T

.

Proof. First, by Assumption B.8, dµ∗
θ,ρ = e−Vρ(·,θ)

Zθ,ρ
dLeb with Zθ,ρ =

∫
e−Vρ(z,θ) dz. Moreover, observe that

∂µ∗
θ,ρ

∂θ
=
(
−∇2Vρ(·, θ) + Eµ∗

θ,ρ
[∇2Vρ(Z, θ)]

)
µ∗
θ,ρ,

where we write µ∗
θ,ρ for the density with an abuse of notation.

Then, taking the gradient of L(θ) = Eρ,y

[
ℓ(h(µ∗

θ), y)
]
, we obtain

∇L(θ) = Eρ,y

[
∇1ℓ

(
h(µ∗

θ,ρ), y
) ∫ δh

δµ
(µ∗

θ,ρ)(z)
∂µ∗

θ,ρ

∂θ
(z) dz

]
= Eρ,y

[
∇1ℓ

(
h(µ∗

θ,ρ, y
)
·
∫
δh

δµ
(µ∗

θ,ρ)(z)

(
−∇2Vρ(z, θ)e−Vρ(z,θ)

Zθ,ρ
+
e−Vρ(z,θ)

∫
∇θVρ(y, θ)e−Vρ(y,θ) dy

Z2
θ,ρ

)
dz

]

= Eρ,y

[
∇1ℓ

(
h(µ∗

θ,ρ, y
)
·
(
−Eµ∗

θ,ρ

[
δh

δµ
(µ∗

θ,ρ)(Z)∇2Vρ(Z, θ)

]
+ Eµ∗

θ,ρ
[∇2Vρ(Z, θ)]Eµ∗

θ,ρ

[
δh

δµ
(µ∗

θ,ρ)(Z)

])]
= Eρ,y

[
∇1ℓ

(
h(µ∗

θ,ρ), y
)
· Covµ∗

θ,ρ

(
δh

δµ
(µ∗

θ,ρ)(Z),∇2Vρ(Z, θ)

)]
.

Let Γ(µ, θ) = ∇1ℓ(h(µ), y) · Covµ

(
δh
δµ (µ)(Z),∇2Vρ(Z, θ)

)
, then we have ∇L(θ) = Eρ,y[Γ(µ∗

θ,ρ, θ)].

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Now, we compute d
dtL(θt) by first applying the chain rule, using that dθt

dt = −εtEρ,y

[
Γ(µt, θt)

]
and remembering

that ∇L(θt) = Eρ,y

[
Γ(µ∗

θt
, θt)

]
.

d

dt
L(θt) =

〈
∇L(θt),

dθt
dt

〉
= −εt

〈
∇L(θt),Eρ,y

[
Γ(µt,ρ, θt)

]〉
= −εt⟨∇L(θt),Eρ,y[Γ(µ∗

θt,ρ, θt)]⟩+ εt⟨∇L(θt),Eρ,y[Γ(µ∗
θt,ρ, θt)− Γ(µt,ρ, θt)]⟩

= −εt∥∇L(θt)∥2 + εtEρ,y[⟨∇L(θt),Γ(µ∗
θt,ρ, θt)− Γ(µt,ρ, θt)⟩].

(16)

Then, applying the Cauchy-Schwartz inequality, and the inequality ab ≤ 1
2 (a2 + b2) ⇐⇒ ab − a2 ≤ 1

2b
2 − 1

2a
2

with a = ∥∇L(θt)∥ and b = Eρ,y

[
∥Γ(µ∗

θt,ρ
, θt)− Γ(µt,ρ, θt)∥

]
, we get

d

dt
L(θt) ≤ −εt∥∇L(θt)∥2 + εt∥∇L(θt)∥Eρ,y

[
∥Γ(µ∗

θt,ρ, θt)− Γ(µt,ρ, θt)∥
]

≤ −εt
2
∥∇L(θt)∥2 +

εt
2
Eρ,y

[
∥Γ(µ∗

θt,ρ, θt)− Γ(µt,ρ, θt)∥
]2

≤ −εt
2
∥∇L(θt)∥2 +

εt
2
Eρ,y

[
∥Γ(µ∗

θt,ρ, θt)− Γ(µt,ρ, θt)∥2
]
,

where we applied the Jensen inequality in the last line.

Then, since t 7→ εt is non-increasing (and thus εT ≤ εt), integrating from t = 0 to t = T , we get

εT
2

∫ T

0

∥∇L(θt)∥2 dt ≤
∫ T

0

εt
2
∥∇L(θt)∥2 dt

≤ L(θ0)− L(θT) +

∫ T

0

εt
2
Eρ,y

[
∥Γ(µ∗

θt,ρ, θt)− Γ(µt,ρ, θt)∥2
]

dt.

And we finally obtain:

1

T

∫ T

0

∥∇L(θt)∥2 dt ≤ 2

εTT

(
L(θ0)− inf

θ
L(θ)

)
+

1

εTT

∫ T

0

εtEρ,y

[
∥Γ(µ∗

θt,ρ, θt)− Γ(µt,ρ, θt)∥2
]

dt. (17)

Using Assumption B.9, ∥Γ(µ∗
θt,ρ

, θt) − Γ(µt,ρ, θt)∥2 ≤ K2
ΓD(µt,ρ, µ

∗
θt,ρ

)2. Let us note Fν
1 (µ) = D(µ, ν)2 and

Fν
2 (µ) = D(ν, µ)2, and therefore let us bound d(t) = Fµ∗

θt,ρ

1 (µt,ρ).

By differentiating, we obtain

d′(t) =
d

dt
D(µt,ρ, µ

∗
θt,ρ) =

∫
δFµ∗

θt,ρ

1

δµ
(µt)

∂µt

∂t︸ ︷︷ ︸
(1)

+

∫
δFµt,ρ

2

δµ
(µ∗

θt,ρ)
∂µ∗

θt,ρ

∂t︸ ︷︷ ︸
(2)

.

On one hand, using that
∂µt,ρ

∂t = div
(
µt,ρ∇WGθt,ρ(µt,ρ)

)
, and doing an integration by parts, we get

(1) =

∫
δFµ∗

θt,ρ

1

∂µ
(µt,ρ)div

(
µt,ρ∇WGθt,ρ(µt,ρ)

)
= −

∫ 〈
∇WF

µ∗
θt,ρ

1 (µt,ρ),∇WGθt,ρ(µt)
〉

dµt,ρ

= −∥∇WF
µ∗
θt,ρ

1 (µt,ρ)∥2L2(µt,ρ)
+ ⟨∇WF

µ∗
θt,ρ

1 (µt,ρ),∇WF
µ∗
θt,ρ

1 (µt,ρ)−∇WGθt,ρ(µt,ρ)⟩L2(µt,ρ).

Applying the inequality ⟨a, b⟩ ≤ ∥a∥2 + 1
4∥b∥

2 (see e.g. [Vempala and Wibisono, 2019, Equation (33)]) and
Assumptions B.10 and B.11, we get

(1) ≤ −3

4
∥∇WF

µ∗
θt,ρ

1 (µt,ρ)∥2L2(µt,ρ)
+ ∥∇WF

µ∗
θt,ρ

1 (µt,ρ)−∇WGθt,ρ(µt,ρ)∥2L2(µt,ρ)

≤ − 3

4CPL
Fµ∗

θt,ρ

1 (µt,ρ) +Mεt

= − 3

4CPL
d(t) +Mεt.

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

On the other hand, for (2), we have

∂µ∗
θt,ρ

∂t
=

〈
∂µ∗

θt,ρ

∂θ
,

dθt
dt

〉
=
〈
∇2Vρ(·, θt)− Eµ∗

θt,ρ
[∇2Vρ(Z, θt)],−εtEρ,y

[
Γ(µt,ρ, θt)]

〉
µ∗
θt,ρ.

Thus, using that ∥∇2Vρ(x, θ)∥ ≤ CV by Assumption B.8, ∥Γ(µ, ν)∥ ≤ CΓ by Assumption B.9 and

∥ δF
µt,ρ
2

δµ (µ∗
θt,ρ

)∥L2(µ∗
θt,ρ

) ≤ CF by Assumption B.10, we get

(2) = −εt
〈∫

δF2

δµ
(µ∗

θt,ρ)(x) · (∇2Vρ(x, θt)− Eµ∗
θt,ρ

[∇2Vρ(Z, θ)]) dµ∗
θt,ρ(x),Eρ,y[Γ(µt,ρ, θt)]

〉
≤ εt∥Eρ,y[Γ(µt,ρ, θt)]∥

∫ ∣∣∣∣δF2

δµ
(µθ∗

t ,ρ
)(x)

∣∣∣∣ · ∥∇2Vρ(x, θt)− Eµ∗
θt,ρ

[∇2Vρ(Z, θt)]∥ dµ∗
θt,ρ(x)

≤ 2εtCΓCV

∫ ∣∣∣∣δF2

δµ
(µ∗

θt,ρ)

∣∣∣∣ dµ∗
θt,ρ

≤ 2εtCΓCV CF .

(18)

Putting everything together, we obtain

d′(t) ≤ − 3

4CPL
d(t) + (M + 2CΓCV CF)εt.

Now, note C̃ = M + 2CΓCV CF , and let’s apply the Grönwall lemma [Dragomir, 2003]:

d(t) ≤ d(0)e
− 3

4CPL
t

+ C̃

∫ t

0

εse
3

4CPL
(s−t)

ds.

Plugging it into (17), we get

1

T

∫ T

0

∥∇L(θt)∥2 dt ≤ 2

εTT

(
L(θ0)−inf

θ
L(θ)

)
+
K2

ΓEρ,y

[
d(0)]

εTT

∫ T

0

εte
− 3

4CP L t
dt+

K2
ΓC̃

εTT

∫ T

0

εt

∫ t

0

εse
3

4CPL
(s−t)

dsdt.

Recall that εt = min(1, t−
1
2), thus TεT =

√
T . The two first terms converge, hence they lie in O(

√
T). For

the third one, we use the same trick as in [Marion et al., 2024, Proof of Proposition 4.5]. Let T0 ≥ 2 such that
1
2T0 ≥

4CPL

3 log(T0). For t ≥ T0, let α(t) = t− 4CPL

3 log(t). Notice that α(t) = t
2 + t

2 −
4CPL

3 ≥ t
2 for all t ≥ T0.

Then, observe that for t ≥ T0,∫ t

0

εse
3

4CPL
(s−t)

ds =

∫ α(t)

0

εse
3

4CPL
(s−t)

ds+

∫ t

α(t)

εse
3

4CPL
(s−t)

ds

≤ ε0e−
3

4CPL

∫ α(t)

0

e
3

4CPL
s
ds+

(
t− α(t)

)
εα(t)

≤ 4CPLε0
3

e
3

4CPL
(α(t)−t)

+
4CPL

3
log(t)εα(t)

≤ 4CPLε0
3t

+
4CPL

3
log(t)εt/2.

Thus, ∫ T

0

εt

∫ t

0

εse
3

4CPL
(s−t)

dsdt ≤
∫ T0

0

εtε0T0 dt+

∫ T

T0

4CPLεtε0
3t

dt+

∫ T

T0

4CPLεtεt/2 log(t)

3
dt

≤ ε0T 2
0 +

4CPL

3

(
log T − log T0

)
+

4CPL

3
log T ·

∫ T

T0

2

t
dt

= O
(
(log T)2

)
.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Putting everything together, we obtain that there exists a constant c > 0 such that

1

T

∫ T

0

∥∇L(θt)∥2 dt ≤ c (log T)2√
T

.

We note that the MMD that we use has only been proven to fulfill a PL inequality with a different power [Arbel
et al., 2019]. We provide this result as it gives a first step towards deriving guarantees of the method, e.g. for
other divergence which would satisfy these assumptions. We leave for future work deriving the PL inequality
for our MMD, or deriving alternative divergences which satisfy these assumptions. In Section D.1, we show
empirically that Assumptions B.10 and B.11, as well as Theorem B.12, hold true in practice. Note that a weaker
version of Theorem B.12, which does not give a specific rate of convergence for the average gradient, holds true
for any gradient flow:

Theorem B.13. For a gradient flow t 7→ θt on a non-negative loss L(θ) with bounded gradients, it holds that

1

T

∫ T

0

∥∇L(θt)∥2 dt
T→∞−−−−→ 0.

Proof. Note that

∂tL(θt) = ⟨∇θL(θt), ∂tθt⟩ = ⟨∇θL(θt),−∇θL(θt)⟩ = −∥∇θL(θt)∥2 ≤ 0.

Since L(θt) ≥ 0, this implies that ∥∇θL(θt)∥2 → 0 as t→∞. Now for any ϵ > 0, we can find a tϵ > 0 such that

for any t > tϵ, ∥∇θL(θt)∥2 ≤ ϵ. This means that for all T ≥ tϵ,

1

T

∫ T

0

∥∇L(θt)∥2 dt ≤ 1

T
(Mtϵ + (T − tϵ)ϵ) ≤

Mtϵ
T

+ ϵ
T→∞−−−−→ ϵ

for some constant M > 0, and as this holds for any ϵ > 0, the claim follows.

We now discuss in more details the MMD case.

MMD case. Let D = 1
2MMD2 with k a kernel satisfying k(x, x) ≤ 1. We first notice that it is currently

unknown whether the MMD satisfies the PL inequality from Assumption B.10. However, it was shown in [Arbel
et al., 2019, Proposition 7], that under some conditions, Fµ∗

θ,ρ
(µ)2 ≤ C

4 ∥∇WFµ∗
θ,ρ

(µ)∥2L2(µ).

For this, we first need to recall the definition of the weighted negative Sobolev distance, e.g. [Arbel et al., 2019,
Definition 5].

Definition B.14. Let µ ∈ P2(Rd) and denote by ∥·∥Ḣ(µ) its corresponding weighted Sobolev semi-norm, defined

for all differentiable f ∈ L2(µ) as ∥f∥2
Ḣ(µ)

=
∫
∥∇f(x)∥2 dµ(x). The weighted negative Sobolev distance between

p, q ∈ P2(Rd) is defined as

∥p− q∥Ḣ−1(µ) = sup
f∈L2(µ), ∥f∥Ḣ(µ)≤1

∣∣∣∣∫ fdp−
∫
fdq

∣∣∣∣ .
This allows us to derive the following lemma.

Lemma B.15 (PL Inequality). Assume k is continuously differentiable with L-Lipschitz gradient, i.e. for all
x, y, x′, y′ ∈ Rd, ∥∇k(x, x′)−∇k(y, y′)∥ ≤ L

(
∥x−x′∥+∥y−y′∥

)
. Then, if for all t ≥ 0, ∥µ∗

θt,ρ
−µt,ρ∥Ḣ−1(µt)

≤ C,

Fµ∗
θ,ρ

(µ)2 ≤ C

4
∥∇WFµ∗

θ,ρ
(µ)∥2L2(µ).

Proof. See [Arbel et al., 2019, Proof of Proposition 7].

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

We now discuss what changes in the MMD case compared to the setting developed above. First, we will also
assume Assumptions B.8, B.9 and B.11. Assumption B.10 is replaced by the assumptions of Lemma B.15 to get
the PL inequality for the MMD.

Under Assumption B.8, we recover (17), i.e.

1

T

∫ T

0

∥∇L(θt)∥2 dt ≤ 2

εTT

(
L(θ0)− inf

θ
L(θ)

)
+

1

εTT

∫ T

0

εtEρ,y

[
∥Γ(µ∗

θt,ρ, θt)− Γ(µt,ρ, θt)∥2
]

dt.

Remember also that Γ can be written as

Γ(µ, θ) = ∇1ℓ
(
h(µ), y

)
· Covµ

(
δh

δµ
(µ)(Z),∇2V (Z, θ)

)
.

First, we need to assume ∥Γ(µ, θ) − Γ(ν, θ)∥ ≤ KΓ

2 MMD(µ, ν). Thus, we need to upper bound d : t 7→
1
2MMD2(µt, µ

∗
θt,ρ

).

Let d(t) = 1
2MMD2(µt, µ

∗
θt,ρ

). By differentiating, we also get

d′(t) =
d

dt
D(µt, µ

∗
θt,ρ) =

∫
δFµ∗

θt,ρ

1

δµ
(µt)

∂µt

∂t︸ ︷︷ ︸
(1)

+

∫
δFµt,ρ

2

δµ
(µ∗

θt,ρ)
∂µ∗

θt,ρ

∂t︸ ︷︷ ︸
(2)

.

By following the same computations as in Theorem B.12, assuming that Assumption B.11 holds and using
Lemma B.15, we have

(1) ≤ − 3

CPL
d(t)2 +Mεt. (19)

For (2), we have by using (18),

(2) = −εt
〈∫

δF2

δµ
(µ∗

θt,ρ)(x) · (∇2Vρ(x, θt)− Eµ∗
θt,ρ

[∇2Vρ(Z, θ)]) dµ∗
θt,ρ(x),Eρ,y[Γ(µt,ρ, θt)]

〉
≤ εt∥Eρ,y[Γ(µt,ρ, θt)]∥

∫ ∣∣∣∣δF2

δµ
(µθ∗

t ,ρ
)(x)

∣∣∣∣ · ∥∇2Vρ(x, θt)− Eµ∗
θt,ρ

[∇2Vρ(Z, θt)]∥ dµ∗
θt,ρ(x)

≤ 2εtCΓCV

∫ ∣∣∣∣δF2

δµ
(µ∗

θt,ρ)

∣∣∣∣ dµ∗
θt,ρ

= 2εtCΓCV

∫ ∣∣∣∣∫ k(x, x′) dµ∗
θt,ρ(x′)−

∫
k(x, y) dµt(y)

∣∣∣∣ dµ∗
θt,ρ

≤ 2εtCΓCV ·
1

2
MMD(µ∗

θt,ρ, µt)

= 2εtCΓCV d(t)

≤ 2εtCΓCV

(
1 + d(t)2

)
,

(20)

where we used that for µθt,ρ-almost every x, k(x, ·) ∈ H and ∥k(x, ·)∥H = k(x, x)
1
2 ≤ 1 and taking the supremum.

Putting everything together, we get,

d′(t) ≤
(

2CΓCV −
3

CPL

)
d(t)2 + (M + 2CΓCV)εt. (21)

Here, we observe that we need to assume 2CΓCV − 3
CPL

≤ 0 for the rate to be converging.

To apply the Grönwall lemma to (21), we need to solve the following Riccati equation y′(t) = −ay2(t) + bε(t)7

for a = 3
CPL
− 2CΓCV ≥ 0, b = M + 2CΓCV , which however does not have a simple solution for b ̸= 0 [Zaitsev

and Polyanin, 2002].

7math.stackexchange.com/questions/4773818/generalized-gronwall-inequality-covering-many-different-applications

math.stackexchange.com/questions/4773818/generalized-gronwall-inequality-covering-many-different-applications

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

For b = 0, we would have

d(t) ≤ d(0)

1 + ad(0)t
,

and ∫ T

0

εtd(t) dt ≤ d(0)

∫ T

0

1

1 + ad(0)t
dt

= d(0) · log(1 + ad(0)T)

ad(0)

= O(log T).

Thus, the rate would be in O
(

log T/
√
T
)
.

If we bound εt by 1, then we can show that

d(t) ≤
√
ba

a
· 1

tanh(
√
bat+K)

,

for K = arctanh
(√

ba
ad(0)

)
. Observing that

∫ T

0

εt
1

tanh(
√
bat+K)

dt ≤
∫ T

0

1

tanh(
√
bat+K)

dt

=
1√
ba

(
log
(

sinh(
√
baT +K)

)
− log

(
sinh(K)

))
= O(T).

However, this bound is too big, and will diverge.

B.4 EI Property

Proposition 5. Let F bil : RN×p × RM×d → RN×p, (Z,X) 7→ F bil(Z,X). Then F bil is a bilinear map that
fulfills the EI property if and only if F bil is of the form

F bil(Z,X) = ZαX⊤1M + 1N1⊤NZβX⊤1M (22)

for some tensors α, β ∈ Rp×p×d, where 1N , 1M denote the vectors with ones in RN and RM .

Proof. F bil is bilinear if it can be written as

F bil(Z,X)ij =
∑
klmn

F bil
ijklmnZklXmn

for some F bil
ijklmn ∈ R. By definition, F bil is equivariant in Z and invariant in X if and only if for any σN , σM ,

it holds that
F bil(Z,X)σN (i)j =

∑
klmn

F bil
ijklmnZσN (k)lXσM (m)n,

which is equivalent to

F bil(Z,X)ij =
∑
klmn

F bil
σ−1
N (i)jσ−1

N (k)lσ−1
M (m)n

ZklXmn.

Hence, F bil has the desired properties if and only if for any σN and σM , it holds that for all indices i, j, k, l,m, n,

F bil
ijklmn = F bil

σN (i)jσN (k)lσ(m)n.

(Note we can replace the inverse permutations by permutations since the set of all inverse permutations is the
same as the set of all permutations.) This is the case if and only if the following two conditions hold:

• F bil
ijklmn = F bil

σN (i)jσN (k)lmn. For fixed i, k, consider two cases:

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

– if i ̸= k, then for all i′ ̸= k′, we can find a σN s.t. σN (i) = i′ and σN (k) = k′, which implies
F bil
ijklmn = F bil

i′jk′lmn

– if i = k, then σN (i) = σN (k) for any σN , hence for all i′, F bil
ijilmn = F bil

i′ji′lmn (since we can always find
σN such that σN (i) = i′).

This means we can write F bil
ijklmn = α̃ljmnδik + β̃ljmn(1− δik) for some α̃ and β̃ in Rp×p×d, where δik is the

Kronecker delta;

• F bil
ijklmn = F bil

ijklσM (m)n, which is equivalent to F bil
ijklmn = F bil

ijklm′n for all m,m′. This means we can write

F bil
ijklmn = F bil

ijkln.

Putting these two things together, this means F bil has the desired properties if and only if it can be written as

F bil
ijklmn = α̃ljnδik + β̃ljn(1− δik)

for some α̃ and β̃ in Rp×p×d. If we let α := α̃− β̃ and β := β̃, this is equivalent to

F bil
ijklmn = αljnδik + βljn.

By writing out equation (22) with indices, one can verify that this is equivalent.

In order to proof that MultiHead attention layers fulfill the EI property, we prove two easy, but helpful lemmas.

Lemma B.16. Let F : RN×p × RM×d → RN×p, such that it can be written as

F (Z,X) = F (Z) =


f(z1)
f(z2)
...

f(zN)


for some function f : Rp → Rp. Then F fulfills the EI property.

Proof. F is trivially invariant in X, as it does not depend on X. Furthermore, it is clear that F is equivariant
in Z, as the ith entry of F only depends on zi.

Lemma B.17. The EI property is preserved under compositions of functions that each fulfill the EI property.

Proof. This follows immediately from the fact that both row-equivariance as well as -invariance are preserved
under compositions.

Proposition 6. Denote by MultiHead(tgt, src) multi-head attention [Vaswani et al., 2017] between a target and
source sequence. Then MultiHead(Z,Z) and MultiHead(Z,X) both fulfill the EI property.

Proof. Recall that single-head cross-attention between X and Z is defined as

Att(Z,X)i = LayerNorm

(∑
j e

τ⟨Qzi,Kxj⟩V xj∑
j e

τ⟨Qzi,Kxj⟩

)

for some matrices Q ∈ Rh×p, K ∈ Rh×d, V ∈ Rp×d, where h ∈ R (typically, h = p = d), and some τ ∈ R; here,

the zi denote the rows of Z, and the xi denote the rows of X. The term
∑

j eτ⟨Qzi,Kxj⟩V xj∑
j eτ⟨Qzi,Kxj⟩

only depends on zi but

none of the other z’s, and is clearly invariant under permutations of the xi, which makes it fulfill the EI property.
Layer normalization fulfills the EI property by lemma B.16, and thus by lemma B.17 single-head cross-attention
does as well. Again by lemma B.17, the result holds for multi-head cross-attention as well. Similarly, we can
show that multi-head self-attention on Z fulfills the EI property, since it is trivially invariant under permutations
of X (as it does not depend on X).

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

C Training Details

C.1 Architecture

In this section, we provide additional details about the architecture. The encoder blocks are stacked multi-head
attention layers [Vaswani et al., 2017], as can be seen in Figure 6.

Multi-Head Attention

N×

Add & Norm

FFN

Add & Norm

Figure 6: Our encoders are stacked multi-head attention layers [Vaswani et al., 2017].

Layer Sizes. The hidden dimensions of the first two feedforward networks (the ones before the bilinear layer)
are the same as the dimension of the bilinear layer (16). The hidden dimensions of the feedforward networks
right after the bilinear layer is the same as the encoder dimension (128). The feedforward network at the end is
a typical transformer feedforward layer, where the hidden dimension is four times that of the encoder dimension
(i.e. 512). We would like to highlight here that our head size (of four), which we tuned extensively, is extremely
small, compared to what is common in the literature. Further investigation into what such a small head size
means for the model and its training is outstanding.

Invertible Network. The invertible network used in the point cloud completion pipeline takes the form
described in the paper, i.e. for the padded Z̃ (which is X with the free particles, padded with zeros to match
the encoder dimension):

Z = q(Z̃) = [Z̃1, Z̃2e
ϕ(Z̃1) + ψ(Z̃1)]

q−1(Z) = [Z1, (Z2 − ψ(Z1))e−ϕ(Z1)],

where ϕ and ψ are two-layer neural networks, and Z̃ = [Z̃1, Z̃2] is a partition of X into two equal-sized chunks
along the particle dimension. Here, both the input and output dimensions, as well as the hidden dimensions of
ϕ and ψ are equal to 64, i.e. half the encoder dimension. It can be readily seen that these layers are indeed
invertible, as we have

q−1(q(Z)) = [Z1, (Z2e
ϕ(Z1) + ψ(Z1)− ψ(Z1))e−ϕ(Z1)] = [Z1,Z2] = Z.

We have tried various different methods for the invertible layer. This includes other invertible neural networks,
but also non-parametric methods, such as an orthogonal matrix, where for the inverse we use the pseudo-
inverse; using the real Fourier transform the map from a lower- to a higher-dimensional space; and also just
using a regular, non-invertible, trainable linear layer, and simply setting the output particles equal to the input
particles manually once a fixed point has been found. Except for the latter, all of these worked comparably
well, but the one we opted for seemed to have a slight edge in practice. Since all methods that are provably
invertible are equivalent on the input points, as they will faithfully recover the input points, the only difference
in performance can stem from how they process points that are not contained in the partial input point cloud.
Possibly, the architecture we opted for is naturally well suited for this type of task; this is supported by the fact

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

that it originated in the invertible normalizing flow literature [Dinh et al., 2014], which also deals with mapping
distributions to distributions.

Masking. Since different samples have different numbers of particles, our batches are padded with zeros. To
account for this, all intermediate states of the network are masked accordingly. For point cloud completion, we
fix the particles that correspond to the input. We do this by setting the outputs of all encoders at the respective
positions equal to the inputs to the network at those positions, and also by masking out the gradient in the MMD
flow with zeros for the fixed particles. This ensures that the particles remain unchanged, and are converted to
the original low-dimensional particles by the inverse invertible layer.

C.2 Training

In this section, we provide some more details regarding the training procedure.

Approximating the Wasserstein Gradient. In practice, we are not directly using the formula for the
Wasserstein gradient we derived, but instead rely on autodifferentiation in PyTorch. This is both for simplicity,
as well as to account for the fact that, as discussed in Section D.3, our network architecture cannot strictly be
written as a pushforward operator on the particles, hence the Wasserstein gradient formula is not exact8. To
account for the fact that in the discrete measure corresponding to Z, each particle is assigned a mass of 1/NZ,
where NZ denotes the number of particles in Z, we rescale the gradient obtained from autodifferentiation by the
number of particles in Z, similar to [Chizat and Bach, 2018, Definition 2.2].

Phantom Gradient. As described in the paper, we rely on the phantom gradient to compute the gradients in
the backward pass of the DDEQ. For a definition of the phantom gradient, we refer the reader to the original
paper [Geng et al., 2021]. We use the DEQSliced implementation from the torchdeq library [Geng and Kolter,
2023], and use just a single gradient step for the phantom gradient, as well as a single state (where increasing
the number of states corresponds to sampling multiple fixed points from the forward solver, and using the best
one).

D Additional Experiments

D.1 Empirical Verification of Theorem B.12

In this section, we empirically verify that Theorem B.12, as well as Assumptions B.10 and B.11 hold true in
practice across all four datasets.

Assumption B.10. We plot

Fµ∗
θt,ρ

(µ)∥∥∥∇WFµ∗
θt,ρ

(µ)
∥∥∥2
L2(µ)

averaged across 8 randomly created µ ∈ P2(Rd) over the course of training. The plots can be seen in Figure 7.
We see that across all four datasets, the above quantity is bounded, which verifies Assumption B.10.

Figure 7: Empirical Verification of Assumption B.10 across all four datasets, with a smoothed EMA.

8We found autodifferentiation to have slightly better performance than using the formula for the Wasserstein gradient,
which can likely be accounted for by the fact that our network is only “almost” a pushforward operator.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Assumption B.11. We plot ∥∥∥∇WGθt,ρ(µt)−∇WFµ∗
θt,ρ

(µt)
∥∥∥2
L2(µt)

ϵt
,

where we set ϵt = min (1, t−1/2), as in Theorem B.12, and choose µt = µ∗
θt,ρ

for simplicity; the plots can be seen
in Figure 8. Again, we have boundedness across all four datasets.

Figure 8: Empirical Verification of Assumption B.11 across all four datasets, with a smoothed EMA.

Theorem B.12.

We plot ∫ T

0
∥∇L(θt)∥2 dt
√
T (log T)2

over the course of training across all three datasets in Figure 9; here, integration is discrete over the training
steps. We see that across datasets, the above quantity is bounded, which verifies Theorem B.12 empirically.

Figure 9: Empirical Verification of Theorem B.12 across all four datasets.

D.2 Ablation Study on Number of Particles in Z

We provide an ablation study on the number of particles in Z. While for point cloud completion, this number is
dictated by the number of particles in the input/target, for point cloud classification, this is a free hyperparameter
which can be tuned. In Figure 10, we see the average accuracy of a DDEQ for the two classification datasets
ModelNet40-s and MNIST-pc over varying numbers of particles in Z.

We can see that for both datasets, the accuracy tends to be very similar for between one and 16 particles in
Z (with a very slight increase in accuracy in the range of four to ten particles), and then quickly drops when
increasing the number of particles even further.

D.3 Ablation Study on Pushforward Architecture

In the derivation of the Wasserstein gradient of G(µ) = 1
2MMD2

(
µ, Fθ#µ

)
, as well as in the proof of Theorem

B.12, we assumed that we can write Fθ(µ) = Fθ#(µ) as a pushforward operator. This means there cannot be
any interactions between particles in how Fθ processes them. However, in the architecture we use in practice,
two parts do not comply with this assumption, namely the bilinear layer and the self-encoder on Z (which
corresponds to µ). In this section, we study how making our architecture a pushforward operator on Z, namely
by changing the bilinear layer from

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Figure 10: Average accuracy on ModelNet40-s and MNIST-pc for varying numbers of particles in Z.

F bil(Z,X) = ZαX⊤1M + 1N1⊤NZβX⊤1M

to

F bil(Z,X) = ZαX⊤1M ,

i.e. removing the part that introduces interactions between particles in Z, and by removing the self-encoder on
Z (while leaving the self-encoder on X and the cross-encoder unchanged) affects the performance.

Table 3: Accuracies and test losses of DDEQs, for the pushforward architecture compared against the complete
architecture we use in practice.

MNIST-pc ModelNet40-s MNIST-pc-partial
Acc. Cross-Entr. Loss Acc. Cross-Entr. Loss MMD Loss

pushforward 97.7 0.101 75.8 0.938 0.0034
full architecture 98.1 0.086 77.3 0.888 0.0033

In Table 3, we can see the differences in accuracy and test loss between the complete architecture, and the one
that can be written as a pushforward. We see that using the architecture that’s strictly a pushforward is overall
comparable to the full architecture, but slightly worse in all metrics.

D.4 Computational Complexity

In this section, we address the computational complexity of DDEQs, and how it changes w.r.t. the number of
forward iterations in the inner loop, as well as the number of points in the input measures. The results are
for point cloud completion on MNIST-pc-partial trained on a single H100 GPU. When reducing the number of
forward pass iterations of the inner loop, we increase the inner loop learning rate accordingly, such that learning
rate × forward iterations remains constant.

Number of Iterations 10 50 100 200 500 1000

Runtime (1 Epoch) 13m 47m 1h32m 3h1m 8h12m 14h53m

Table 4: Runtime per epoch for different numbers of iterations.

In contrast, the runtime for PCN is 4min. This shows that the number of forward iterations is crucial in controlling
the runtime of DDEQs. It can be reduced to around 50 iterations without significant loss in performance,
but deriving methods to improve accuracy for fewer iterations is an important line of future research, as well
as deriving other methods to speed up training, such as improving the optimizer, possibly with momentum.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Input Particles (%) 20% 40% 60% 80% 100%

Runtime (1 Epoch) 1h16m 1h29m 1h51m 2h20m 3h1m

Table 5: Runtime per epoch for different input particle percentages.

Fixed point acceleration methods such as Anderson acceleration that exist in a Euclidean setting could be
derived for WGFs; another approach would be to use the sliced MMD [Hertrich et al., 2024], which reduces the
computational complexity of computing (the gradient of) the MMD from O(n2) to O(n log n) (where n is the
number of particles).

D.5 Comparing DDEQs and DEQs

To demonstrate that DDEQs outperform standard DEQs on point cloud completion, we trained classical DEQs
with the same architecture, but with (1) Broyden, (2) Anderson, and (3) fixed point iteration forward solvers,
three widely used forward solvers for DEQs. All three perform similarly and achieve a test loss, measured as the
squared MMD between prediction and target, of 13× that of DDEQs, and an average Wasserstein-2 loss of 4×
that of DDEQs, with very poor visual image quality. However, we want to mention that DEQs achieve (almost)
comparable performance on point cloud classification, highlighting the fact that while DDEQs are capable of
point cloud classification, this is not a task that necessitates them, whereas point cloud completion clearly is.

D.6 Fixed Points

In this section, we show what the fixed points for the classification tasks look like, and how close they are to
being real fixed points. In Figures 11 and 12, we see the fixed points Z∗ obtained for both datasets, alongside
Fθ(Z∗) – for perfect fixed points, these two should be identical. Since Z is high dimensional, we project it to
two dimensions with UMAP [McInnes et al., 2018], both with two, as well as 30 neighbors. Clearly, with both
projection methods Z∗ and Fθ(Z∗) tend to be visibly fairly close, but noticeable differences remain.

D.7 Class Embeddings

In our classification models, the classification head is a single linear layer which gets as input only the MaxPooling
of the fixed points. Thus, the DDEQ needs to embed the class information in the MaxPooling of the fixed points.
In Figures 13 and 14, we see the output of the MaxPooling for the samples of three batches of the test split,
respectively.

As can be seen, the embeddings for MNIST-pc classes are very distinct, and the embeddings for ModelNet40-s
are distinct for most classes, but for some, there is significant overlap. Note that these are visualizations of
128-dimensional points in two dimensions, and suffer from the limitations of the representation techniques used.

D.8 Additional ModelNet40-s-partial Samples

Figure 15 contains additional samples for point cloud completion on ModelNet40-s-partial with DDEQ and PCN.
We see from the samples that DDEQ excels at certain classes, such as airplane, but other classes, such as bowls
or cones, can be failure modes. PCN tends to do better on airplanes as well, but generally produces point clouds
that are too diffuse. In Table 6, we report the average OT distances (with Euclidean distance as cost function)
between the predictions and ground truth for DDEQ and PCN. For DDEQ, we compute both the distance
between the complete prediction and ground truth, as well as only for the ”free particles” and the corresponding
particles in the target.

DDEQ PCN

free particles full point cloud
OT Distance 1.27± 0.04 0.154± 0.002 0.61± 0.02

Table 6: OT distances between predictions and targets for DDEQ and PCN on ModelNet40-s-partial.

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

D.9 Visualization of MMD Gradient Flow With Rotational Target

In the literature, MMD gradient flows are typically studied with a fixed target measure, i.e. gradient flows of
µ 7→ MMD2 (µ, ν) for a fixed measure ν. To our knowledge, gradient flows of functionals of the form µ 7→
MMD2 (µ, F (µ)), where F is a functional, have not been studied yet. To illustrate what interesting emergent
properties these gradient flows can have even for very simple target functions, we show what the gradient flow
looks like when F is a rotation of 2π/8 resp. 2π/5 around the origin, in Figures 16 and 17. We initialize

x ∼ N
([
−10

0

]
,

[
1 0
0 12

])
, such that the initial particles are not centered around the origin, and again use the

Riesz kernel, with η = 10 and γη = 0.999.

We see that instead of converging to a point cloud uniformly distributed around the origin, the MMD flow
converges to diverse geometric patterns which are perfectly symmetric.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Figure 11: Fixed points for MNIST-pc classification. First column is inputs, second and third column are Z∗

resp. Fθ(Z∗), mapped with UMAP with n neighbors=2; and the fourth and fifth column are Z∗ resp. Fθ(Z∗),
mapped with UMAP with n neighbors=30.

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Figure 12: Fixed points for ModelNet40-s classification. First column is inputs, second and third column are Z∗

resp. Fθ(Z∗), mapped with UMAP with n neighbors=2; and the fourth and fifth column are Z∗ resp. Fθ(Z∗),
mapped with UMAP with n neighbors=30.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Figure 13: Distribution of the MaxPooling of the fixed points on MNIST-pc, visualized with UMAP with
n neighbors=80.

Figure 14: Distribution of the MaxPooling of the fixed points on ModelNet40-s, for a subset of 20 of the 40
classes. Visualized with TSNE [van der Maaten and Hinton, 2008] with perplexity=30.

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Figure 15: ModelNet40-s-partial samples.

DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows

Figure 16: MMD gradient flow where the target functional is a rotation by 2π/5. The columns show the flow at
initialization, after 10, 50, 200, 1000, and 2000 iterations, and the rotation applied to the last iterate (in red).

Jonathan Geuter, Clément Bonet, Anna Korba, David Alvarez-Melis

Figure 17: MMD gradient flow where the target functional is a rotation by 2π/8. The columns show the flow at
initialization, after 10, 50, 200, 1000, and 2000 iterations, and the rotation applied to the last iterate (in red).

	INTRODUCTION
	RELATED WORK
	DDEQs
	Deep Equilibrium Models
	DDEQs as Bilevel Optimization
	Inner Optimization
	Outer Optimization
	Training Algorithm
	Architecture

	EXPERIMENTS
	Datasets
	Implementation Details

	CONCLUSION
	BACKGROUND
	Measure Theory
	Optimal Transport
	Discrepancies between Probability Measures
	Wasserstein Gradient Flows

	PROOFS
	Wasserstein Gradient
	Implicit Gradient
	Loss Convergence
	EI Property

	Training Details
	Architecture
	Training

	Additional Experiments
	Empirical Verification of Theorem B.12
	Ablation Study on Number of Particles in Z
	Ablation Study on Pushforward Architecture
	Computational Complexity
	Comparing DDEQs and DEQs
	Fixed Points
	Class Embeddings
	Additional ModelNet40-s-partial Samples
	Visualization of MMD Gradient Flow With Rotational Target

