
A Sinkhorn-NN Hybrid Algorithm

for Optimal Transport

Jonathan Geuter

October 15, 2022

Master’s Thesis

Technische Universität Berlin

First Examiner: Dr. Vaios Laschos, WIAS Berlin

Second Examiner: Prof. Dr. Martin Skutella, TU Berlin

2

Abstract

The Sinkhorn algorithm [11] is the state-of-the-art to compute approximations to optimal transport

distances between discrete probability distributions, using an entropic regularizer added to the optimal

transport problem. The entropic problem being a strictly convex optimization problem, the algorithm

is guaranteed to converge, no matter its initialization. This lead to little attention being paid to

initializing it, and simple starting vectors like the n-dimensional one-vector are common choices. We

present a Sinkhorn-NN hybrid algorithm, in which a pretrained neural network predicts an approxi-

mation of the optimal potential of the optimal transport dual problem given two distributions, which

can then be used to compute a starting vector for the Sinkhorn algorithm. The network is universal

in the sense that it is able to generalize to any pair of distributions of fixed dimension. We show that

this initialization can significantly accelerate convergence of the Sinkhorn algorithm.

A PyTorch implementation can be found at https://github.com/j-geuter/SinkhornNNHybrid.

3

https://github.com/j-geuter/SinkhornNNHybrid

Deutsche Zusammenfassung
Short Summary in German

Optimal Transport oder, auf Deutsch, Optimaler Transport ist ein Teilgebiet der Mathematik, das

sich mit dem Transport zwischen Wahrscheinlichkeitsverteilungen beschäftigt. Gegeben zwei pol-

nische Wahrscheinlichkeitsräume (X , µ) and (Y, ν) mit ihren jeweiligen Borel-σ-Algebren und eine

Kostenfunktion c : X × Y → R ∪ {+∞} lautet das Kantorovich-Problem

inf
γ∈Π(µ,ν)

{∫
X×Y

c(x, y) dγ(x, y)

}
,

wobei Π(µ, ν) die Menge aller Transportpläne enthält, das heißt aller Wahrscheinlichkeitsmaße γ auf

dem Produktraum X × Y, sodass γ ◦ π−1
X = µ, γ ◦ π−1

Y = ν. Ein Maß γ ∈ Π(µ, ν) ”transportiert”

somit das Maß µ auf ν, und über alle Produktmaße γ mit dieser Eigenschaft werden die Gesamtkosten

minimiert. Das duale Problem lautet

sup

{∫
X
ψ(x) dµ(x) +

∫
Y
ϕ(y) dν(y) : ψ ∈ L1(µ), ϕ ∈ L1(ν), ψ + ϕ ≤ c

}
,

und beide Probleme besitzen stets Optimierer, deren Optima übereinstimmen. In der Praxis ist es

jedoch insbesondere in hohen Dimensionen sehr rechenaufwändig, diese Optimierer zu bestimmen. Ein

effizienter Algorithmus zur Approximation des Optimums und auch eines optimalen Transportplans

im Fall, dass beide Maße diskret sind, ist der Sinkhornalgorithmus [11]. Dieser konvergiert gegen die

Lösung des entropisch regularisierten Problems

inf
γ∈Π(µ,ν)

{〈c, γ〉 − εH(γ)} ,

wobei ε > 0 ein Regularisierungskoeffizient ist und H(γ) := −
∑

ij γij(log γij − 1) die Entropie des

Transportplans γ. Der Sinkhornalgorithmus ist ein iteratives Näherungsverfahren, das mit einem

Startvektor initialisiert wird. Da die Konvergenz unabhängig vom Startvektor garantiert ist, wurde

einer spezifizierten Initialisierung bisher wenig Beachtung geschenkt (vgl. Amos et al. [2] oder

auch Thornton und Cuturi [40]). Wir zeigen, dass eine gut gewählte Initialisierung die Konvergen-

zgeschwindigkeit deutlich verbessern kann. Dazu stellen wir unseren Sinkhorn-NN hybrid algorithm

vor – ein Hybrid aus einem neuronalen Netz und dem Sinkhornalgorithmus. Wir trainieren ein Netz

so, dass es ein optimales Potential f des diskreten dualen Transportproblems

max {〈f, µ〉+ 〈g, ν〉 : f ∈ Rm, g ∈ Rn, f + g ≤ c}

gegeben µ und ν approximieren kann, und zeigen, wie sich daraus ein Startvektor für den Sinkhornalgo-

rithmus bestimmen lässt, der die Konvergenzgeschwindigkeit verglichen mit einem üblichen Startvek-

tor deutlich verbessert. Die Arbeit enthält eine ausführliche Einführung in die Thematik Optimal

Transport, inklusive eines Überblicks über das diskrete Transportproblem, der sogenannten Wasser-

steindistanzen und des Sinkhornalgorithmus (Kapitel 3 und 4). Im Anschluss werden die Details

unseres Sinkhorn-NN-Algorithmus erläutert (Kapitel 5) und Ergebnisse verschiedener Experimente

präsentiert (Kapitel 6), die abschließend diskutiert werden (Kapitel 7). Notationen werden in Kapitel

2 erklärt, und einige technische Details und Hintergründe lassen sich im Appendix A finden.

4

CONTENTS 5

Contents

1 Introduction 6

2 Notation 8

3 Optimal Transport 11

3.1 The Monge Problem . 11

3.2 The Kantorovich Problem . 13

3.3 c-Transforms and the Dual Problem . 17

3.4 Fundamental Theorem of Optimal Transport . 22

3.5 Duality Theorem . 26

3.6 Wasserstein Distances . 28

3.7 Discrete Optimal Transport . 32

4 Sinkhorn Algorithm 35

4.1 Entropic Optimal Transport . 35

4.2 Sinkhorn Algorithm . 41

4.3 Initializing Sinkhorn’s Algorithm . 43

5 Sinkhorn-NN Hybrid Algorithm 45

5.1 A Trained Initialization for the Sinkhorn Algorithm 45

5.2 Training Data . 46

5.3 Test Data . 48

5.4 Network Architecture . 49

5.5 Why Not...? . 50

5.6 Training . 54

6 Results 55

6.1 Error w.r.t. Iterations . 55

6.2 Speed . 56

7 Discussion 61

A Appendix 62

References 67

Index 70

6 1 INTRODUCTION

1 Introduction

Optimal Transport [41][33][35] is, in short, the theory of optimally transporting something from one

place to another. Today, it plays an increasing role in various areas. Besides economics [21], it thrives

in machine learning applications, amongst others, and has been used in domain adaptation [10], single-

cell genomics [36], imitation learning [12], imaging [37] and signal processing [26], to name a few.

French mathematician Gaspard Monge laid its foundation in the 18th century. In his 1781 publication

Mémoire sur la théorie des déblais et des remblais [29], he considers the following problem: Assume

you extract soil from various places, and this soil needs to be transported to various other places,

e.g. construction sites. You know how much soil you extract in each location, as well as how much is

needed at each construction site. You also know how much it costs you to transport a certain amount

of soil from a to b. What you are looking for is a transport plan, i.e. an assignment that tells you

how much soil to transport from each extraction point to each construction site. In mathematical

terms, this reads as follows: Given two Polish probability spaces (X , µ) and (Y, ν), equipped with

their Borel-σ-algebras, and a cost function c : X × Y → R ∪ {+∞}, the task is to find a measurable

transport map T : X → Y which ”transports” mass from the measure µ to mass from the measure ν,

meaning we require ν = µ ◦ T−1, while minimizing the total cost∫
X
c(x, T (x)) dµ(x).

While this formulation is very intuitive and simple, it has one major drawback: There is no guarantee

that such an optimizer exists. There may not even exist any transport map at all - consider the

case where µ is a Dirac measure and ν is not. The formulation of the problem which is most common

today is a relaxation of Monge’s original formulation, and was derived by Soviet mathematician Leonid

Vitaliyevich Kantorovich [24] in 1942. The crucial change Kantorovich proposed was the following:

Instead of requiring the existence of a transport map - which means that given a location where you

extract soil, you have to find a single construction site this soil is transported to - we are now only

interested in a transport plan, which allows for splitting up the soil to be transported to different

construction sites. Mathematically speaking, this means we try to find a measure γ on X × Y which

admits µ and ν as its marginals on X and Y, i.e.

γ ◦ π−1
X = µ, γ ◦ π−1

Y = ν,

where π denotes the projection, and minimizes∫
X×Y

c(x, y) dγ(x, y).

This problem has a dual problem:

sup

{∫
X
ψ(x) dµ(x) +

∫
Y
ϕ(y) dν(y) : ψ ∈ L1(µ), ϕ ∈ L1(ν), ψ + ϕ ≤ c

}
,

7

and both problems admit optimal solutions and their optimal values coincide; however, computing

these solutions tends to be computationally expensive, particularily in higher dimensions. In the

discrete setting, i.e. where X = {x1, ..., xm} and Y = {y1, ..., yn} are both finite, an efficient way

to compute an approximation of the solution is the Sinkhorn algorithm [11], an iterative algorithm

converging to the solution of the entropic optimal transport problem, which consists of adding an

entropic regularizer to the Kantorovich problem:

min
γ

{
〈γ, c〉 − εH(γ) : γ ◦ π−1

X = µ, γ ◦ π−1
Y = ν

}
where ε > 0 is a regularizing coefficient and H(γ) := −

∑
ij γij(log γij − 1) the entropy of γ. At its

core, the algorithm consists of initializing v0 ∈ Rn>0 and the simple iterates

ul+1 =
µ

exp(−c/ε)vl
, vl+1 =

ν

exp(−c/ε)>ul+1
, l = 0, 1, 2, ...,

where the fractions are to be understood as element-wise division and we slightly abuse notation by

considering µ ∈ Rm and ν ∈ Rn to be vectors representing the measures. As the entropic optimal

transport problem can be shown to be ε-strongly convex it admits a unique solution, and the Sinkhorn

algorithm is guaranteed to converge to this solution. However, carefully choosing a starting vector v0

for the algorithm can significantly improve its convergence speed. In the literature, little attention has

been paid to the initialization of the Sinkhorn algorithm so far (see, e.g., Amos et al. [2] or Thornton

and Cuturi [40]). We suggest a Sinkhorn-NN hybrid algorithm (NN signifying neural network), where

a neural network is pretrained to predict an optimal potential f of the discrete dual problem

max
f∈Rm, g∈Rn

f+g≤c

〈f, µ〉+ 〈g, ν〉

given µ and ν. This potential can be used to compute a starting vector v0 for the Sinkhorn algorithm

via

v0 = exp(f c/ε),

where f c is the c-transform of f , defined as f(x) = miny c(x, y) − f(x). We will show that this

approach significantly improves the convergence speed of the Sinkhorn algorithm compared to a fixed

initialization commonly used.

The thesis is structured as follows: in section 2, all notation used throughout the thesis is defined.

The following section 3 is devoted to a thorough introduction to optimal transport. The Monge and

Kantorovich problems are defined, and two major theorems – the fundamental theorem of optimal

transport 3.4.1 and the duality theorem 3.5.1 – are proven. Additionaly, the well-known Wasserstein

distances are defined, and we will see what the optimal transport problem looks like in the discrete

case. Section 4 features the entropic optimal transport problem and the Sinkhorn algorithm. In

section 5, we will discuss the details of our algorithm and its implementation, such as the training

data and network structure we used. Experiments and results will be presented in section 6. A final

discussion, interpreting the results and outlining the scope and limits of the idea presented, can be

found in section 7. The appendix A contains some basics and further explanations omitted during the

thesis.

8 2 NOTATION

2 Notation

In this section, we list some notations that will be used throughout the thesis. Definitions and results

corresponding to these notations can be found in the appendix, section A. Also, we will mention some

conventions that will be used throughout the thesis. Some basic definitions first:

� N := {0, 1, 2, 3, ...}

� N>0 := {1, 2, 3, 4, ...}

� for m,n ∈ N>0, m ≤ n: Jm,nK := {m,m+ 1, ..., n} and JnK := J1, nK

� For r ∈ R: [0, r] := {x ∈ R : 0 ≤ x ≤ r}, [0, r) := {x ∈ R : 0 ≤ x < r}, etc.

� Sn with n ∈ N>0 denotes the set of all permutations of JnK

� 2X := {X : X ⊂ X} for a set X

Linear Algebra

For n ∈ N>0, In denotes the identity in Rn×n and 1n ∈ Rn the n-dimensional vector with all entries

equal to 1. Similarily, by 0n ∈ Rn we denote the 0-vector. If it is clear what space is meant, we will

sometimes write 0 instead. Let ∆n−1 = {v ∈ Rn≥0 :
∑

i vi = 1} be the n− 1-dimensional probability

simplex in Rn and ∆n−1
>0 = {v ∈ ∆n−1 : vi > 0 for all i ∈ JnK}. For a matrix A ∈ Rm×n, aij refers

to the entry in the ith row and jth column. We will also write [aij]ij for the matrix A. By vec(A) we

refer to the vector in Rmn that one gets by concatenating the columns of A, i.e. vec(A)(j−1)m+i = Aij

for all i, j. For m,n, k, l ∈ N>0, A ∈ Rm×n and B ∈ Rk×l, A ⊗ B ∈ Rmk×nl denotes the Kronecker

product of A and B, i.e. the matrix

A⊗B :=


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 .
If f : R→ R is a function, then by f(A) we refer to the matrix resulting from entry-wise application

of f , i.e.

f(A) := [f(aij)]ij ∈ Rm×n.

For two vectors a, b ∈ Rn, 〈a, b〉 is the usual scalar product and diag(a) ∈ Rn×n the matrix with

diagonal entries diag(a)ii = ai and all other entries equal to 0. For matrices A,B ∈ Rm×n, we use 〈·, ·〉
to denote the Frobenius dot-product :

〈A,B〉 :=

m∑
i=1

n∑
j=1

aijbij .

9

Analysis

Let (X , d) be a metric space and x ∈ X . For r > 0, we denote by Br(x) the open ball of radius r

around x and by Br(x) its closure. More generally, for any set A ⊂ X , we will denote its closure by

A. A neighbourhood of a point x ∈ X is a set V ⊂ X containing an open set U such that x ∈ U ⊂ V .

X is called totally bounded if for any ε > 0, we can cover X by finitely many open balls of radius ε.

A Polish space is a complete, separable metric space.1 We will oftentimes deal with the product space

of two Polish spaces (which is again a Polish space), each equipped with its own σ-algebra. The

σ-algebra on the product space will then be the product-σ-algebra.2

A function f : X → R ∪ {±∞} is called lower semicontinuous if

f(x0) ≤ lim inf
x→x0

f(x) for all x ∈ X .

The support supp(f) of a function f : X → R ∪ {±∞} is the set {x ∈ X : f(x) 6= 0}.
By C(X) we denote the space of all continuous functions f : X → R, and the space of all continuous

and bounded functions is denoted by Cb(X).

Sometimes, for spaces X and Y, we will consider functions f : X ×Y → R, g : X → R, h : Y → R and

then make statements like f ≤ g + h. This is to be understood as f(x, y) ≤ g(x) + h(y) for all x ∈ X
and all y ∈ Y.

For any set X, by IdX we refer to the identity function on X. If it is clear what identity function is

meant, we will sometimes only write Id.

If Y is another set, then πX is the projection X × Y → X, (x, y) 7→ x.

Measure Theory

For a topological space X , its Borel σ-algebra is denoted by B(X). A measure µ on a measurable

space (X ,A) is called Borel measure if B(X) ⊂ A, and finite if µ(X) <∞.

For A ⊂ X , the indicator function 1A : X → R is defined via

1A(x) :=

1, x ∈ A

0, x 6∈ A
.

The Dirac measure at x ∈ X is defined as δx : B(X)→ R, δx(A) = 1A(x).

Throughout the thesis, we will always consider all measure spaces to be Polish probability

spaces, equipped with their Borel σ-algebra, unless stated otherwise. Also, all functions on

measure spaces are always assumed to be measurable (in cases where there are no measures

involved, for example for functions defined on mere sets, this is of course not assumed).

The set of all Borel probability measures on X will be denoted by P (X). A set N ⊂ X is said to be

µ-negligible if it is contained in a Borel set of measure 0. A measure µ on X is said to be concentrated

on C ⊂ X if X \ C is µ-negligible. The support supp(µ) of µ ∈ P (X) is the smallest closed set on

which µ is concentrated.

1Note that some authors define a Polish space to be a separable, completely metrizable topological space, which is a
space homeomorphic to a separable, complete metric space.

2More details on the product of two Polish spaces and its σ-algebra can be found in the appendix, see e.g. remark
A.11, where we also explain why it does not matter whether we choose the product σ-algebra or the σ-algebra generated
by the product topology on the product space of two Polish spaces.

10 2 NOTATION

If T is a map X → Y and µ a measure on X , then the pushforward measure of µ by T is the measure

µ ◦ T−1 on Y.3

The weak topology on P (X) is induced by convergence against functions in Cb(X), i.e. bounded and

continuous test functions. More explicitly, a sequence (γn)n∈N ⊂ P (X) is said to converge to γ ∈ P (X)

(weakly), if for all f ∈ Cb(X), we have

lim
n→∞

∫
X
f(x) dγn(x) =

∫
X
f(x) dγ(x).

A fact worth noting here and one that will be used throughout the thesis is that integration against

bounded and continuous test functions uniquely defines a measure (cmp. lemma A.19).

A set M ⊂ P (X) is called tight if for any ε > 0, there exists a compact set Kε ⊂ X such that for all

µ ∈M , we have µ(X \Kε) < ε.

If S1 is a measurable space and X : Ω→ S1 is a random variable defined on a probability space (Ω,P),

its pushforward measure P◦X−1 on the image space S1 is also called the law of X and will be denoted

by L(X). Similarily, if S2 is another measurable space and Y : Ω → S2 is another random variable

defined on (Ω,P), the pushforward measure P ◦ (X,Y)−1 of (X,Y) : Ω→ S1 × S2 will be denoted by

L(X,Y).

Sometimes we will make statements like ”for all x ∈ X , we have c(x) ≤ a(x)”, where a ∈ L1(µ)

for some measure µ on X . Of course, as a is not defined point-wise, statements like this are to be

understood as ”µ-almost surely, we have...”.

Machine Learning

By lr we will sometimes refer to a network’s learning rate. We will oftentimes deal with the mean

squared error which we denote by MSE . For a set of errors e := {e1, ..., eN} with ei ∈ R for i ∈ JNK,
it is defined as

MSE(e) :=

∑
i e

2
i

N
. (1)

Also, we will sometimes write MSE(a, b) for two vectors a and b. This is to be understood as MSE(a−b)
as in (1).

Similarily, the L1 error is defined as

L1(e) :=

∑
i |ei|
N

,

and again L1(a, b) := L1(a− b).
By ReLU we refer to the rectified linear unit, an activation function defined by

ReLU(x) := max{0, x}, x ∈ R,

which is applied element-wise in the case where x is a vector.

By 1eZ for Z ∈ Z we refer to the quantity 10Z , e.g. 1e35, 1e-3, etc.

3there are many different notations in the literature for the pushforward measure, including T#µ, T#µ, T (µ), Tµ, or
µT−1.

11

3 Optimal Transport

In this chapter, we introduce the optimal transport problem in its two well-known formulations, the

Monge and Kantorovich Problem, in sections 3.1 and 3.2. We will then derive a dual formulation

of the Kantorovich Problem in section 3.3 and get to know the concepts of c-cyclical monotonicity,

c-concavity, and c-transforms. Leveraging these new concepts, we prove the Fundamental Theorem of

Optimal Transport in section 3.4. A duality theorem can easily be derived, as is shown in section 3.5.

Section 3.6 deals with the case where the source and target space are the same, which gives rise to the

so-called Wasserstein distances. Finally, in section 3.7, we will focus on the special case where both

the source and target distributions are discrete. Amongst many other applications, this is the case

when considering distributions that are derived from image data, where the pixels can be considered

to be a discrete metric space. In particular sections 3.1–3.3 and 3.6 are based on [41].

Be reminded we are always considering Polish probability spaces equipped with their Borel-σ-algebra

if not stated otherwise. Also note that some properties of Polish spaces will be used implicitly, such

as the fact that the product σ-algebra of two Polish spaces is the same as the Borel σ-algebra on

the product space, or the fact that the product of two Polish spaces is again a Polish space. See the

appendix, in particular remark A.11, for more details.

3.1 The Monge Problem

The most basic structure we will use time and time again is the so-called coupling, something we

already got to know in the introduction.

Definition 3.1.1 (Coupling). Let (X , µ) and (Y, ν) be two probability spaces. Let X : Ω → X and

Y : Ω → Y be two random variables on a probability space (Ω,P) such that their laws are equal to µ

and ν, i.e. L(X) = µ, L(Y) = ν. Then (X,Y) is called a coupling of µ and ν. Oftentimes, the joint

law L(X,Y) is also referred to as a coupling.

A coupling can be seen as transforming the measure µ into the measure ν, or, put differently, trans-

porting mass from µ to ν. Hence, couplings are also called transport plans. This gets more clear by

realizing that coupling µ and ν is nothing else but constructing a measure γ on X × Y which admits

µ and ν as its marginals, meaning:

γ ◦ π−1
X = µ, γ ◦ π−1

Y = ν.

Indeed, note if we are given a coupling (X,Y), such a measure γ is given by the joint law of (X,Y) as

for any A ∈ B(X), we have

L(X,Y) ◦ π−1
X (A) = L(X,Y)(A× Y) = L(X)(A) = µ(A)

12 3 OPTIMAL TRANSPORT

which is equivalent to the marginal condition on X , and the marginal condition on Y follows in the

same way. The set of all such γ is denoted by Π(µ, ν). We will refer to measures in Π(µ, ν) as couplings

as well.

Remark 3.1.2. For a probability measure γ on X × Y, the following conditions are equivalent to γ

being a coupling of µ and ν:

1. For all measurable sets A ∈ B(X) and B ∈ B(Y) it holds γ(A×Y) = µ(A) and γ(X ×B) = ν(B).

2. For all (φ, ψ) ∈ L1(µ)× L1(ν) it holds∫
X×Y

φ(x) + ψ(y) dγ(x, y) =

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y).

3. For all (φ, ψ) ∈ Cb(µ)× Cb(ν) it holds∫
X×Y

φ(x) + ψ(y) dγ(x, y) =

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y).

This is an immediate consequence of lemma A.19 and a fact that we will use again later, as

integration against functions in Cb is what defines weak convergence.

Remark 3.1.3. Note that there always exists a coupling between any measures µ and ν: Simply set

γ = µ ⊗ ν, which is also called the trivial coupling. This means the corresponding random variables

X and Y are independent. In this case, knowledge of X does not provide any information about Y .

The other extreme case is the following.

Definition 3.1.4 (Deterministic Coupling). A coupling (X,Y) of µ and ν is called deterministic

coupling if there exists a map T : X → Y s.t. Y = T (X). T is called a transport map.

Remark 3.1.5. In terms of measures, the equivalent definition is the following: A coupling γ ∈ Π(µ, ν)

is deterministic if there exists a map T : X → Y such that γ = µ ◦ (Id, T)−1.

Note that for deterministic couplings, ν is given as the push-forward measure of µ by T , as for any

B ∈ B(Y) we have

µ ◦ T−1(B) = µ((Id, T)−1(X ×B)) = γ(X ×B) = ν(B).

With this definition at hand, we are now able to precisely define the Monge problem. As we have seen

in the introduction, we are interested in transport maps that are optimal with respect to a given cost

function c.

In the Monge problem, we integrate the cost function with respect to a deterministic coupling γ and

optimize over all such deterministic couplings. As deterministic couplings have the property that

they concentrate the mass on the graph of a function T , this problem can be more conveniently and

intuitively formulated as follows:

Problem 3.1.6 (Monge Problem). Let (X , µ) and (Y, ν) be two probability spaces and c : X ×Y →
R ∪ {+∞} a cost function. The Monge Problem is defined as:

inf
T

{∫
X
c(x, T (x)) dµ(x) : T : X → Y, ν = µ ◦ T−1

}
.

3.2 The Kantorovich Problem 13

Example 3.1.7. Consider the following simple example illustrating the concept of transport maps.

Let λ be the Lebesgue measure on R, X = Y = [0, n + 1], and c(x, y) = |x − y|p for some p > 0.

Building a cost function using a distance is very common; we will see this again later when introducing

Wasserstein distances in section 3.6. Let µ = 1
nλ|[0,n] and ν = 1

nλ|[1,n+1] be the uniform distributions

on [0, n] and [1, n+ 1] resp. for some n > 1. Consider the following transport maps:

T1(x) := x+ 1, T2(x) :=

x+ n, x ∈ [0, 1],

x, x ∈ (1, n].

The corresponding transport costs are:∫
X
c(x, T1(x)) dµ(x) =

∫ n

0
|x− (x+ 1)|p dµ(x) =

1

n

∫ n

0
1 dx = 1

and ∫
X
c(x, T2(x)) dµ(x) =

∫ 1

0
|x− (x+ n)|p dµ(x) =

1

n

∫ 1

0
np dx = np−1.

Hence, we can see that T1 yields a better transport cost if and only if p > 1, and T2 if and only if

p < 1. For p = 1, the transport costs are the same. Intuitively this makes sense, as T1 moves all mass

along R equally, whereas T2 leaves as much mass as possible in place while only moving some from

the ”start” to the ”end”, which should not be favourable if transport costs grow faster than linearly

(i.e. p > 1), while being favourable if the opposite is the case.

As we have seen in the introduction, the Monge problem faces a serious drawback: transport maps

between measures need not exist. In the following section, we will get to know a famous relaxation of

this problem, the Kantorovich Problem.

3.2 The Kantorovich Problem

Problem 3.2.1 (Kantorovich Problem). Let (X , µ) and (Y, ν) be two probability spaces and c :

X × Y → R ∪ {+∞} a cost function. The Kantorovich Problem is defined as:

inf
γ∈Π(µ,ν)

{∫
X×Y

c(x, y) dγ(x, y)

}
.

Remark 3.2.2. As we will see later on, there exists a dual problem to the Kantorovich problem.

That’s why problem 3.2.1 is also referred to as the primal problem of optimal transport .

Definition 3.2.3 (Optimal Transport Plan). A transport plan γ ∈ Π(µ, ν) which achieves the infimum

in problem 3.2.1 is called an optimal transport plan.

As any transport map T induces a transport plan via γ = µ ◦ (Id, T)−1 (see remark 3.1.5), this is

indeed a relaxation of Monge’s problem. The important difference is the following: Whereas in the

Monge problem, mass from x ∈ X gets transported entirely to T (x) ∈ Y, the Kantorovich problem

allows for splitting the mass.

14 3 OPTIMAL TRANSPORT

This relaxation comes with many nice properties. For example, under very mild assumptions on the

cost function, we can guarantee the existence of an optimal transport plan. In the following, we will

prove this result. The proof makes use of Prokhorov’s Theorem (see A.16): A subset P ⊂ P (X) has

compact closure with respect to the weak topology if and only if it is tight. To apply it, we will need

tightness of Π(µ, ν), which is what the following lemma gives us in combination with the fact that {µ}
and {ν} are tight subsets of P (X) and P (Y) resp., which we will prove in lemma 3.2.5.

Lemma 3.2.4 (Tightness of Transport Plans). Let P ⊂ P (X) and Q ⊂ P (Y) be two tight subsets

of P (X) and P (Y) respectively. Then the set of all transport plans in P and Q, namely Π(P,Q) :=⋃
µ∈P, ν∈QΠ(µ, ν), is tight in P (X × Y).

Proof. Let ε > 0. By assumption, there exist compact sets Kε ⊂ X and Lε ⊂ Y such that

µ(X \Kε) ≤
ε

2
for all µ ∈ P; ν(Y \ Lε) ≤

ε

2
for all ν ∈ Q.

Now let µ ∈ P and ν ∈ Q be two measures and γ ∈ Π(µ, ν) a transport plan. Then:

γ(X × Y \ (Kε × Lε)) ≤ µ(X \Kε) + ν(Y \ Lε) ≤
ε

2
+
ε

2
= ε

and the claim follows from the fact that Kε × Lε is again compact in X × Y.

We will apply the previous lemma to the sets {µ} ⊂ P (X) and {ν} ⊂ P (Y), hence we have to prove

that they are tight, which might seem intuitively obvious.

Lemma 3.2.5. For a Polish space X , any µ ∈ P (X) is tight (viewed as the set {µ}).

Proof. This proof follows that of Theorem 3.2 in [32].

Let ε > 0. We need to show that there exists a compact set K ⊂ X such that µ(X \ K) ≤ ε. Let

{a1, a2, ...} be a dense subset of X . For any m ∈ N>0, there exists an integer nm such that

µ

(
nm⋃
i=1

B 1
m

(ai)

)
> µ(X)− ε

2m
.

Let

K :=

∞⋂
m=1

nm⋃
i=1

B 1
m

(ai).

Then K is closed. We now show that K is totally bounded. Let δ > 0 and choose m such that 1
m < δ.

Then

K ⊂
nm⋃
i=1

B 1
m

(ai) ⊂
nm⋃
i=1

Bδ(ai).

Hence, K is compact by lemma A.14. Furthermore,

µ(X \K) = µ

(∞⋃
m=1

(
X \

nm⋃
i=1

B 1
m

(ai)

))
≤
∞∑
m=1

µ

(
X \

nm⋃
i=1

B 1
m

(ai)

)

=
∞∑
m=1

(
µ(X)− µ

(
nm⋃
i=1

B 1
m

(ai)

))
<
∞∑
m=1

ε

2m
= ε.

3.2 The Kantorovich Problem 15

The main idea in the proof will be to use Weierstraß’ Theorem (A.15) on the functional

F : Π(µ, ν)→ R ∪ {+∞}, γ 7→
∫
X×Y

c(x, y) dγ.

Note F cannot take the value −∞ as we will only consider cost functions bounded from below. Once

we know that F is lower semicontinuous, this will yield a minimizer. In order to prove lower semicon-

tinuity of F , we need to establish the following well-known fact about lower semicontinuous functions.

Lemma 3.2.6. Let (X , d) be a metric space and f : X → R ∪ {+∞} be lower semicontinuous and

bounded from below. Then there exists a sequence (fn)n∈N of continuous functions fn : X → R that

converge to f pointwise from below.

Proof. Set

fn(x) := inf
y∈X
{f(y) + nd(x, y)}.

Then all fn are continuous, as every map x 7→ f(y) + nd(x, y) for fixed y ∈ X is continuous. Further-

more, it is clear that f0 ≤ f1 ≤ ... ≤ f , as f(x) = f(x) +nd(x, x) ≥ infy{f(y) +nd(x, y)} for all x ∈ X
and all n ∈ N. Hence, for fixed x ∈ X , limn→∞ fn(x) exists and limn→∞ fn(x) ≤ f(x). To finish the

proof, it suffices to show that limn→∞ fn(x) ≥ f(x).

Without loss of generality, we may assume l := limn→∞ fn(x) <∞ (otherwise, the inequality we want

to prove trivially holds). For each n ∈ N, we can choose yn ∈ X such that

fn(x) ≤ f(yn) + nd(x, yn) < fn(x) +
1

n
. (2)

Thus, using the fact that f is lower bounded, we get

d(x, yn) <
fn(x) + 1

n − f(yn)

n
≤
l + 1

n − f(yn)

n
≤ C

n

for some constant C not depending on n. This yields d(x, yn)→ 0 as n→∞, i.e. yn converges to x.

As we have fn(x) + 1
n > f(yn) by equation (2), we get

lim
n→∞

fn(x) = lim
n→∞

fn(x) +
1

n
≥ lim inf

n→∞
f(yn) ≥ f(x),

where we used the lower semicontinuity of f in the last estimate.

Remark 3.2.7. An even stronger statement holds true: f is lower semicontinuous if and only if it

can be written as the pointwise limit from below of a sequence of k-Lipschitz functions. To prove this

version of the statement, one can use the same functions as in the proof above, as they are already

k-Lipschitz by definition.

With this proposition at hand, we are now able to show that the functional F from above is lower

semicontinuous.

Proposition 3.2.8 (Lower Semicontinuity of the Cost Functional). Let c : X × Y be a lower semi-

16 3 OPTIMAL TRANSPORT

continuous, bounded from below cost function. Then the functional

F : Π(µ, ν)→ R ∪ {+∞}, γ 7→
∫
X×Y

c(x, y) dγ

is lower semicontinuous, where Π(µ, ν) is equipped with the weak topology on P (X × Y).

Proof. As c is bounded from below and lower semicontinuous, by lemma 3.2.6 there exists a sequence

(cn)n∈N of continuous cn : X × Y → R such that c(x, y) = limn→∞ cn(x, y) from below for all (x, y) ∈
X × Y. Let (γl)l∈N ⊂ Π(µ, ν) be a sequence converging weakly to some γ ∈ Π(µ, ν). Then

F (γ) =

∫
X×Y

c(x, y) dγ(x, y) = lim
n→∞

∫
X×Y

cn(x, y) dγ(x, y)

= lim
n→∞

lim
l→∞

∫
X×Y

cn(x, y) dγl(x, y)

≤ lim inf
l→∞

∫
X×Y

c(x, y) dγl(x, y)

= lim inf
l→∞

F (γl),

where in the first step, we used the Monotone Convergence Theorem (theorem A.18), the second

step follows by weak convergence of γl, and the last one by the fact that the cn converge to c from

below.

We are now able to prove the existence of an optimal transport plan for the Kantorovich problem

3.2.1.

Theorem 3.2.9 (Existence of an Optimal Transport Plan). Let (X , µ) and (Y, ν) be two Polish spaces

and c : X×Y → R∪{+∞} a lower semicontinuous cost function that is bounded from below. Then there

exists an optimal transport plan γ ∈ Π(µ, ν) minimizing the total transport cost
∫
X×Y c(x, y) dγ(x, y).

Proof. Let

F : Π(µ, ν)→ R ∪ {+∞}, F (γ) :=

∫
X×Y

c(x, y) dγ(x, y).

We need to show that F attains its minimum on Π(µ, ν). By proposition 3.2.8, we know that F is

lower semicontinuous. All that is left to show is that Π(µ, ν) is compact; then the claim follows by

Weierstraß Theorem (A.15). From lemma 3.2.5, we know that {µ} and {ν} are tight in P (X) and

P (Y) respectively. Hence, by lemma 3.2.4, Π(µ, ν) is tight in P (X × Y) as well. By Prokhorov’s

Theorem (A.16), Π(µ, ν) is precompact, meaning its closure (with respect to the weak topology) is

compact in P (X × Y). Hence, in order to show that Π(µ, ν) is compact, it suffices to show that it is

closed.

Let (γn)n∈N ⊂ Π(µ, ν) be a sequence converging weakly to some γ ∈ P (X × Y). Let (ϕ,ψ) ∈
Cb(X)× Cb(Y). Then∫

X×Y
ϕ(x) + ψ(y) dγ(x, y) = lim

n→∞

∫
X×Y

ϕ(x) + ψ(y) dγn(x, y) =

∫
X
ϕ(x) dµ(x) +

∫
Y
ψ(y) dν(y),

from which γ ∈ Π(µ, ν) follows by remark 3.1.2.

3.3 c-Transforms and the Dual Problem 17

Remark 3.2.10. The lower boundedness of c ensures that
∫
X×Y cdγ is well-defined in R ∪ {+∞}.

Oftentimes in applications, c will be a metric, so this assumption is automatically fulfilled. However,

it is possible to generalize the theorem to more general cost functions; in [41], for example, it is only

assumed that c ≥ a+ b for some a ∈ L1(µ) and b ∈ L1(ν).

Remark 3.2.11. The existence of an optimal coupling does not imply that this optimal transport

cost is finite; simply take c = +∞, for example. Hence, sometimes stronger assumptions on c are

made, such as
∫
X×Y cdµ dν < +∞ which yields a finite cost for at least the trivial coupling.

Remark 3.2.12. One might wonder if we could prove the existence of an optimal transport map in

a similar fashion. However, the problem is that the set of transport maps is in general not a compact

subset of P (X × Y); in fact, it is oftentimes dense in Π(µ, ν). Hence, we can only hope for equality

of the infimum in the Monge problem and the minimum in the Kantorovich problem. There exist

numerous theorems of this form for certain settings. One of the most general ones as of today is the

following.

Corollary 3.2.13. Let (X , µ) and (Y, ν) be two Polish probability spaces, where µ is non-atomic,

meaning for any A ∈ B(X) with µ(A) > 0, there exists some B ∈ B(X) with B (A and µ(B) > 0.

Let c : X × Y → R ∪ {+∞} be a continuous cost function. Then the infimum in the Monge problem

is equal to the minimum in the Kantorovich problem.

Proof. This theorem, alongside its proof, can be found as Theorem B in [34].

3.3 c-Transforms and the Dual Problem

Duality is oftentimes a powerful tool to rephrase a problem into an equivalent dual problem. As

in many other areas of mathematics, optimal transport comes with such a dual formulation as well.

Many concepts and results that are known in convex analysis transfer to optimal transport if we adapt

the notions of some concepts, such as concavity or cyclical monotonicity, to the cost function c.

The dual problem very naturally extends our soil-analogy from earlier. So far, we were concerned with

transporting soil from extraction points in X to construction sites in Y at minimal cost
∫
X×Y cdγ.

Now assume a company offers to do the transport for you. They will buy the soil from you for ψ(x)

at the extraction point x ∈ X and sell it back to you for ϕ(y) at the construction site y ∈ Y. This

means to get soil transported from x to y, you now pay ϕ(y)−ψ(x) instead of c(x, y). Obviously, you

are only willing to accept this offer if the company stays below the transport cost c which you would

pay if you did the transport yourself. Hence, they need to set the prices ψ and ϕ such that

ϕ(y)− ψ(x) ≤ c(x, y) for all (x, y) ∈ X × Y.

Under this condition, the company will try to maximize their profits. This naturally yields the dual

Kantorovich problem:

18 3 OPTIMAL TRANSPORT

Problem 3.3.1 (Dual Kantorovich Problem). Let (X , µ) and (Y, ν) be two probability spaces and

c : X × Y → R ∪ {+∞} a cost function. The dual Kantorovich problem is defined as:

sup

{∫
X
ψ(x) dµ(x) +

∫
Y
ϕ(y) dν(y) : ψ ∈ L1(µ), ϕ ∈ L1(ν), ψ + ϕ ≤ c

}
.

The functions ψ and φ are also called (dual) potentials.

Note that for the sake of simplicitly, we changed the sign of ψ in our formulation of the dual. This

means that ψ(x) would correspond to what you pay the company at x ∈ X . A pair of price functions

(ψ,ϕ) satisfying the condition ψ + ϕ ≤ c will be called competitive. Ultimately, as is usually the case

with dual formulations, we would like to show equality of the optima appearing in the primal and

dual problems. One inequality is both intuitive and easy to show: As any pair of competitive prices

stays below the cost function, the value of the dual problem should be at most the value of the primal

problem. Indeed, if γ ∈ Π(µ, ν) is a transport plan and (ψ,ϕ) is a pair of competitive prices, then∫
X×Y

c(x, y) dγ(x, y) ≥
∫
X×Y

ψ(x) + ϕ(y) dγ(x, y) =

∫
X
ψ(x) dµ(x) +

∫
Y
ϕ(y) dν(y),

which yields

inf
γ∈Π(µ,ν)

{∫
X×Y

c(x, y) dγ(x, y)

}
≥ sup

ψ∈L1(µ)

ϕ∈L1(ν)

{∫
X
ψ(x) dµ(x) +

∫
Y
ϕ(y) dν(y) : ψ + ϕ ≤ c

}
. (3)

This means if we can find a transport plan γ and a competitive pair (ψ,ϕ) which yield equality, both

are optimal for the primal and dual respectively.

For a given point x ∈ X , the company will of course try to maximize ψ(x), as this is what you pay

them. Under the premise of competitiveness, the maximum value ψ(x) can take is infy c(x, y)−ϕ(y).

Similarly, the company will try to maximize ϕ(y) for a given y ∈ Y, which they can set to a maximum

of infx c(x, y)− ψ(x). In light of this consideration, we refer to a pair of prices (ψ,ϕ) as tight if

ψ(x) = inf
y
c(x, y)− ϕ(y) for all x ∈ X , ϕ(y) = inf

x
c(x, y)− ψ(x) for all y ∈ Y. (4)

As functions of this form will play a vital role, they get a name: They are called c-transforms.

Definition 3.3.2 (c-Transform). Let c : X × Y → R ∪ {+∞}, ψ : X → R ∪ {±∞} and ϕ : Y →
R ∪ {±∞}.
The c-transform ψc : Y → R ∪ {−∞} of ψ is defined via

ψc(y) = inf
x∈X

c(x, y)− ψ(x).4

Similarily, the c-transform ϕc : X → R ∪ {−∞} of ϕ is defined via

ϕc(x) = inf
y∈Y

c(x, y)− ϕ(y).

If we have an arbitrary pair of competitive prices (ψ,ϕ), we could improve ψ by setting ψ(x) = ϕc(x)

4We assume that for all y ∈ Y there exists some x ∈ X such that c(x, y)−ψ(x) <∞, and a similar assumption on ϕ.

3.3 c-Transforms and the Dual Problem 19

everywhere. Then, in turn, we could improve ϕ by setting ϕ(y) = ψc(y) everywhere. As can be easily

seen, we cannot improve ψ and ϕ any further in this way; (4) now holds. Hence, it makes sense to

restrict to tight pairs of functions in the dual problem. Since we can reconstruct ϕ from ψ using (4),

we can consider ψ as the only variable in the dual. However, simply choosing ψ ∈ L1(µ) arbitrarily

and then defining ϕ as in (4) will not make the first equation in (4) hold. It will hold true if and only

if ψ is c-concave according to the following definition.

Definition 3.3.3 (c-Concavity). Let c : X × Y → R ∪ {+∞} be a function.

A function ψ : X → R ∪ {−∞} is called c-concave if ψ 6≡ −∞ and there exists a function ϕ : Y →
R ∪ {−∞} such that ψ = ϕc.

Similarily, a function ϕ : Y → R ∪ {−∞} is called c-concave if ϕ 6≡ −∞ and there exists a function

ψ : X → R ∪ {−∞} such that ϕ = ψc.

Figure 1: A c-concave function ψ : X → R ∪ {−∞} is one whose graph can entirely be caressed from
above with the negative cost function. The points (xi, yi), i ∈ J3K, come from the superdifferentials
∂cψ(xi) respectively, see definition 3.3.5. The blue graph shows ψ and the red graphs show the
functions c(·, yi)− ψc(yi) respectively.

Example 3.3.4. In the special case where c = d is a metric (i.e. X = Y), being c-concave is equivalent

to being 1-Lipschitz (i.e. being Lipschitz continuous with Lipschitz constant equal to 1). To see this,

first let ψ : X → R ∪ {−∞} be c-concave and ϕ as in definition 3.3.3, such that ψ = ϕc. Then for

x, y ∈ X we have

|ψ(x)− ψ(y)| =
∣∣∣∣(inf

z∈X
c(x, z)− ϕ(z)

)
−
(

inf
z∈X

c(y, z)− ϕ(z)

)∣∣∣∣
=

∣∣∣∣(sup
z∈X

ϕ(z)− c(y, z)
)
−
(

sup
z∈X

ϕ(z)− c(x, z)
)∣∣∣∣

≤
∣∣∣∣sup
z∈X

ϕ(z)− d(x, z)− ϕ(z) + d(y, z)

∣∣∣∣
=

∣∣∣∣sup
z∈X

d(y, z)− d(x, z)

∣∣∣∣ ≤ d(x, y),

which shows that ψ is 1-Lipschitz. On the other hand, if ψ is 1-Lipschitz, we have

ψ(x) ≤ d(x, y) + ψ(y)

20 3 OPTIMAL TRANSPORT

for all x, y ∈ X and, choosing y = x, we can see that this means

ψ(x) = inf
y∈X

d(x, y)− (−ψ(y)) = (−ψ)c(x),

i.e. ψ = (−ψ)c which shows that ψ is c-concave. Similarly, from

− ψ(x) ≤ d(x, y)− ψ(y)

we can conclude that

− ψ(x) = inf
y∈X

d(x, y)− ψ(y) = ψc(x),

i.e. ψc = −ψ. This shows that the c-transform of ψ is not just any function, but in this case actually

equal to −ψ.

As can be seen from our previous considerations, the subset of X ×Y where ψc(y) = c(x, y)−ψ(x) is

special in the sense that on this set, the infimum from (4) is attained at ψ(x) for ϕ = ψc; note that

the inequality ψc(y) ≤ c(x, y)− ψ(x) holds on all of X × Y by definition. This set also gets a name.

Definition 3.3.5 (c-Superdifferential). Let c : X × Y → R ∪ {+∞} and let ψ : X → R ∪ {−∞} be

c-concave. Then the c-superdifferential ∂cψ ⊂ X × Y of ψ is defined as

∂cψ = {(x, y) ∈ X × Y : ψc(y) = c(x, y)− ψ(x)}.

The c-superdifferential ∂cψ(x) of ψ at x ∈ X is given by

∂cψ(x) = {y ∈ Y : (x, y) ∈ ∂cψ}.

Remark 3.3.6. In the literature, there exist many more definitions, such as c+- and c−-transforms,

c-convexity, or c-subdifferentials. However, they are all redundant in some sense. For example, a

function ψ is c-convex if and only if −ψ is c-concave. Hence, the definitions from above will suffice.

The next result justifies the concept of c-concavity, as it shows that c-concave functions are exactly

those functions where a double c-transformation yields the same function again.

Proposition 3.3.7 (Alternative Characterization of c-Concavity). For ψ : X → R ∪ {+∞}, let

ψcc := (ψc)c. Then ψ is c-concave if and only if ψcc = ψ.

Proof. First, we note that for any function φ : Y → R∪{−∞}, we have the identity φc = (φcc)c =: φccc,

as

φccc(x) = inf
y∈Y

[
c(x, y)− inf

x̃∈X

(
c(x̃, y)− inf

ỹ∈Y
(c(x̃, ỹ)− φ(ỹ))

)]
= inf

y∈Y
sup
x̃∈X

inf
ỹ∈Y

[c(x, y) + c(x̃, ỹ)− φ(ỹ)− c(x̃, y)]

and x̃ = x yields

φccc(x) ≥ inf
y∈Y

inf
ỹ∈Y

[c(x, y) + c(x, ỹ)− φ(ỹ)− c(x, y)] = ψc(x),

3.3 c-Transforms and the Dual Problem 21

whereas ỹ = y yields

φccc(x) ≤ inf
y∈Y

sup
x̃∈X

[c(x, y) + c(x̃, y)− φ(y)− c(x̃, y)] = ψc(x).

Now if ψ is c-concave, there exists a function ϕ as in definition 3.3.3 such that ψ = ϕc, hence

ψcc = ϕccc = ϕc = ψ. On the other hand, if ψ = ψcc, then ψ is the c-transform of ψc and c-concave

by definition.

An alternative characterization of the c-superdifferential at a point x which we will need later on is

the following.

Proposition 3.3.8 (Alternative Characterization of the c-Superdifferential).

Let c : X × Y → R ∪ {+∞} and let ψ : X → R ∪ {−∞} be c-concave. A point y ∈ Y lies in the

c-superdifferential of ψ at x ∈ X if and only if

ψ(x)− c(x, y) ≥ ψ(z)− c(z, y) for all z ∈ X .

Proof. ”⇒”: Let y ∈ ∂cψ(x). We have

ψ(x)− c(x, y) = −ψc(y) = − inf
z∈X

c(z, y)− ψ(z)

= sup
z∈X

ψ(z)− c(z, y) ≥ ψ(z)− c(z, y) for all z ∈ X .

”⇐”: Let ψ(x)− c(x, y) ≥ ψ(z)− c(z, y) hold for all z ∈ X . Then

ψ(x)− c(x, y) ≥ sup
z∈X

ψ(z)− c(z, y)

= − inf
z∈X

c(z, y)− ψ(z) = −ψc(y),

but as we have seen before, the reverse inequality ψc(y) ≤ c(x, y) − ψ(x) always holds by definition,

which gives us ψc(y) = c(x, y)− ψ(x), hence y ∈ ∂cψ(x).

Another concept that we will need is that of c-cyclical monotonicity. Before we define it, let’s motivate

its definition by our analogy again. Say you have a transport plan, but you think you could improve

it. In order to do so, you decide to reroute one unit of soil that was originally sent from x1 to y1 to

go to y2 instead. This means you reduce the transport cost by c(x1, y1)− c(x1, y2). Now as you have

excess soil at y2, you send one unit that was sent from x2 to y2 to go to y3 instead. If you keep going

like this, at some point you will have to send a unit of soil that was going from xn to yn to go to y1

instead, as y1 was still lacking one unit from earlier. This means your new transport plan is better

than the old one if and only if

c(x1, y2) + c(x2, y3) + ...+ c(xn, y1) < c(x1, y1) + c(x2, y2) + ...+ c(xn, yn).

If you can find such a cycle improving the transport cost, this shows your original plan was not

optimal. Conversely, if you cannot find such a cycle, it seems likely that your original plan was indeed

optimal (and we will see later that under mild assumptions, this is in fact true), and it operates on a

c-cyclically monotone set.

22 3 OPTIMAL TRANSPORT

Figure 2: Trying to reduce the transport cost by finding a cycle of lower cost. Solid arrows stand for
the original transport plan, dashed arrows for the rerouted mass.5

Definition 3.3.9 (c-Cyclical Monotonicity). Let X and Y be two sets and c : X × Y → R ∪
{+∞} a function. A subset Γ ⊂ X × Y is called c-cyclically monotone if for all n ∈ N>0, all

(x1, y1), ..., (xn, yn) ∈ Γ, and all permutations σ ∈ Sn, there holds

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i)).

A transport plan is said to be c-cyclically monotone if it is concentrated on a c-cyclically monotone

set.

One nice result is that c-superdifferentials are always c-cyclically monotone.

Proposition 3.3.10. Let ψ : X → R∪ {−∞} be c-concave. Then ∂cψ is a c-cyclically monotone set.

Proof. Let n ∈ N>0 and (xi, yi) ∈ ∂cψ, i ∈ JnK. Let σ ∈ Sn. Then

n∑
i=1

c(xi, yi) =
n∑
i=1

ψ(xi) + ψc(yi) =
n∑
i=1

ψ(xi) + ψc(yσ(i)) ≤
n∑
i=1

c(xi, yσ(i)).

In the following section, we will see as part of the Fundamental Theorem of Optimal Transport 3.4.1

that under mild assumptions on c, every c-cyclically monotone set can in turn be obtained from the

c-superdifferential of a c-concave function.

3.4 Fundamental Theorem of Optimal Transport

This section is devoted to the Fundamental Theorem of Optimal Transport and its proof, which is

partly also based on [1].

5Source: [41], figure 5.1.

3.4 Fundamental Theorem of Optimal Transport 23

Theorem 3.4.1 (Fundamental Theorem of Optimal Transport). Let (X , µ) and (Y, ν) be two Polish

probability spaces and c : X ×Y → R be a continuous and bounded from below cost function, such that

for some a ∈ L1(µ) and b ∈ L1(ν),

c(x, y) ≤ a(x) + b(y) for all (x, y) ∈ X × Y.

Let γ ∈ Π(µ, ν) be an arbitrary transport plan. Then the following three statements are equivalent:

(i) γ is optimal for the Kantorovich problem

(ii) supp(γ) is a c-cyclically monotone set in X × Y

(iii) There exists a c-concave function ψ such that max{ψ, 0} ∈ L1(µ) and supp(γ) ⊂ ∂cψ

Proof. First, notice that c ∈ L1(γ̃) for any γ̃ ∈ Π(µ, ν) as c is bounded from below and∫
X×Y

c(x, y) dγ̃(x, y) ≤
∫
X×Y

a(x) + b(y) dγ̃(x, y) =

∫
X
a(x) dµ(x) +

∫
Y
b(y) dν(y) <∞.

(i)⇒ (ii) :

Intuitively, it is quite clear what to do: Assume that supp(γ) is not c-cyclically monotone, find a set

on which we can reduce the transport cost, and ”shift” γ along this set in order to construct a new

transport plan which has lower total cost than γ, which yields a contradiction.

More explicitly: We assume for the sake of contradiction that supp(γ) is not c-cyclically monotone.

That means we can find n ∈ N>0, (xi, yi) ∈ supp(γ), i ∈ JnK, and some σ ∈ Sn such that

n∑
i=1

c(xi, yi) >
n∑
i=1

c(xi, yσ(i)).

As c is continuous, we can find neighbourhoods Ui × Vi ∈ B(X × Y) of (xi, yi) for all i such that

n∑
i=1

c(ui, vσ(i))− c(ui, vi) < 0 for all (ui, vi) ∈ Ui × Vi, i ∈ JnK. (5)

Now we will construct a signed measure η (see definition A.3) on B(X ×Y) such that the ”variation”

γ̃ := γ + η has a lower total cost than γ. To this end, η needs to fulfill the following three conditions:

(1) η− ≤ γ, where η− is the lower variation of η (see definition A.6), so that γ̃ ≥ 0 is a measure

(2) η ◦ π−1
X = 0, η ◦ π−1

Y = 0 (i.e. the marginals are zero, s.t. γ̃ ∈ Π(µ, ν))

(3)
∫
X×Y c(x, y) dη(x, y) < 0 (s.t. γ is not optimal)

Note that the second condition will also imply that 0 = η(π−1
X (X)) = η(X × Y), i.e. γ̃(X × Y) = 1.

Let Ω := Πn
i=1Ui × Vi and P ∈ P (Ω) be defined as P = γ1 ⊗ γ2 ⊗ ...⊗ γn, where γi := 1

mi
γ|Ui×Vi with

mi := γ(Ui × Vi), i ∈ JnK. Then each γi is a probability measure on Ui × Vi and P is a probability

measure on Ω. Let πUi : Ω→ Ui and πVi : Ω→ Vi be the projections onto Ui and Vi. Set

η :=
minimi

n

n∑
i=1

P ◦ (πUi , πVσ(i)
)−1 − P ◦ (πUi , πVi)

−1.

24 3 OPTIMAL TRANSPORT

Let (A×B) ∈ B(X)×B(Y) be arbitrary. Since for all i we have (A×B)∩ (Ui×Vi) ⊂ A×B, we have

η−(A×B) ≤ minimi

n

n∑
i=1

1

mi
γ(A×B) ≤ 1

n
· nγ(A×B) = γ(A×B),

and since B(X × Y) is generated by sets of this form, it follows that η− ≤ γ, which proves (1).

Regarding (2), for B ∈ B(Y), we have

η ◦ π−1
Y (B) = η(X ×B)

=
minimi

n

n∑
i=1

P
(
(U1 × V1)× ...× (Uσ(i) × (Vσ(i) ∩B))× ...× (Un × Vn)

)
− P ((U1 × V1)× ...× (Ui × (Vi ∩B))× ...× (Un × Vn))

=
minimi

n

n∑
i=1

γσ(i)(Uσ(i) × (Vσ(i) ∩B))− γi(Ui × (Vi ∩B)) = 0, (6)

hence η ◦ π−1
Y = 0. Similarily, η ◦ π−1

X = 0 follows, except that in the analogous derivation as in

equation (6), the permutation will disappear. This proves (2).

Regarding (3), note that from (5) it follows that
∫
c dη ≤ 0, but since c is continuous we even have∫

cdη < 0.

To sum it up, we now have a transport plan γ̃ ∈ Π(µ, ν) such that∫
X×Y

c(x, y) dγ̃(x, y) =

∫
X×Y

c(x, y) dγ(x, y) +

∫
X×Y

c(x, y) dη(x, y) <

∫
X×Y

c(x, y) dγ(x, y),

which contradicts the optimality of γ.

(ii)⇒ (iii) :

We will prove an even more general statement: Any c-cyclically monotone set Γ ⊂ X ×Y is contained

in the c-superdifferential of a c-concave function ψ s.t. max{ψ, 0} ∈ L1(µ).

Let Γ be a c-cyclically monotone set and (x̄, ȳ) ∈ Γ. Since we want Γ ⊂ ∂cψ to hold, for any n ∈ N>0

and any (xi, yi) ∈ Γ, i ∈ JnK, there has to hold

ψ(x) ≤ c(x, y1)− ψc(y1) = c(x, y1)− c(x1, y1) + ψ(x1)

≤ (c(x, y1)− c(x1, y1)) + c(x1, y2)− ψc(y2)

= ...

≤ (c(x, y1)− c(x1, y1)) + (c(x1, y2)− c(x2, y2)) + ...+ (c(xn, ȳ)− c(x̄, ȳ)) + ψ(x̄).

Hence, it makes sense to define ψ as the infimum over all such expressions. However, we leave out

ψ(x̄) in the end. Note that a function ψ is c-concave if and only if ψ + k for a constant k ∈ R is

c-concave, and that the c-superdifferentials of ψ and ψ + k are identical, thus we are free to ignore

ψ(x̄). We define

ψ(x) := inf
n∈N>0

(xi,yi)∈Γ,i∈JnK

(c(x, y1)− c(x1, y1)) + (c(x1, y2)− c(x2, y2)) + ...+ (c(xn, ȳ)− c(x̄, ȳ)) . (7)

3.4 Fundamental Theorem of Optimal Transport 25

Now for n = 1 and (x1, y1) = (x̄, ȳ) we get ψ(x̄) ≤ c(x̄, ȳ)− c(x̄, ȳ) = 0, whereas we get ψ(x̄) ≥ 0 from

the fact that ψ(x̄) is defined as the infimum over expressions which by c-cyclical monotonicity of Γ

are all non-negative. Thus, ψ(x̄) = 0, which yields ψ 6≡ −∞, as is needed by definition of c-concave

functions. In order to see that ψ is indeed c-concave, set

ϕ(y) := sup
n∈N>0

(x1,y),(xi,yi)∈Γ,i∈JnK

c(x1, y)− c(x1, y2) + c(x2, y2)− ...− c(xn, ȳ) + c(x̄, ȳ),

for y ∈ πY(Γ), and ϕ(y) := −∞ for y 6∈ πY(Γ). Then, replacing y1 by y in the definition of ψ, we can

see that

ψ(x) = inf
y∈Y

inf
n∈N>0

(x1,y),(xi,yi)∈Γ,i∈JnK

c(x, y)− c(x1, y) + c(x1, y2)− c(x2, y2) + ...+ c(xn, ȳ)− c(x̄, ȳ)

= inf
y∈Y

c(x, y)− ϕ(y).

Choosing n = 1 and (x1, y1) = (x̄, ȳ) again, we get

ψ(x) ≤ c(x, ȳ)− c(x̄, ȳ) ≤ a(x) + b(ȳ)− c(x̄, ȳ), 6

and as a ∈ L1(µ), this yields max{ψ, 0} ∈ L1(µ). Now all that is left to show is that Γ ⊂ ∂cψ. To this

end, let (x̃, ỹ) ∈ Γ. We need to show that (x̃, ỹ) ∈ ∂cψ. Let (x1, y1) = (x̃, ỹ). Then from (7) we get

ψ(x) ≤ c(x, ỹ)− c(x̃, ỹ) + inf
n∈N

(xi,yi)∈Γ,i∈J2,nK

c(x̃, y2)− c(x2, y2) + ...+ c(xn, ȳ)− c(x̄, ȳ)

≤ c(x, ỹ)− c(x̃, ỹ) + inf
n∈N>0

(xi,yi)∈Γ,i∈JnK

c(x̃, y1)− c(x1, y1) + ...+ c(xn, ȳ)− c(x̄, ȳ)

= c(x, ỹ)− c(x̃, ỹ) + ψ(x̃),

which holds for all x ∈ X . By proposition 3.3.8, this is equivalent to (x̃, ỹ) ∈ ∂cψ.

(iii)⇒ (i) :

Let ψ be as in (iii) and supp(γ) ⊂ ∂cψ. We have

ψ(x) + ψc(y) = c(x, y) for all (x, y) ∈ supp(γ),

ψ(x) + ψc(y) ≤ c(x, y) for all (x, y) ∈ X × Y.

Also max{ψc, 0} ∈ L1(ν) as

ψc(y) = inf
x∈X

c(x, y)− ψ(y) ≤ c(x, y)− ψ(x) ≤ a(x) + b(y)− ψ(x)

for all (x, y) ∈ X × Y. As b ∈ L1(ν) and a, ψ 6≡ −∞, this yields max{ψc, 0} ∈ L1(ν). Let γ̃ ∈ Π(µ, ν)

6To be precise, b(ȳ) is not really defined, as b ∈ L1(ν). However, b is defined ν-a.s., and this suffices as the point
(x̄, ȳ) ∈ Γ was arbitrary.

26 3 OPTIMAL TRANSPORT

be an arbitrary transport plan. We will show that
∫
cdγ ≤

∫
cdγ̃, which yields the claim:∫

X×Y
c(x, y) dγ(x, y) =

∫
X×Y

ψ(x) + ψc(y) dγ(x, y) =

∫
X
ψ(x) dµ(x) +

∫
Y
ψc(y) dν(y)

=

∫
X×Y

ψ(x) + ψc(y) dγ̃(x, y) ≤
∫
X×Y

c(x, y) dγ̃(x, y).

Remark 3.4.2. One interesting statement worth noting was proven: under the assumptions made on

c in theorem 3.4.1, any c-cyclically monotone set is contained in the c-superdifferential of a c-concave

function.

Remark 3.4.3. Another important and immediate consequence of theorem 3.4.1 is the following: If

γ is an optimal transport plan and γ̃ is another arbitrary transport plan with supp(γ̃) ⊂ supp(γ),

then γ̃ is also optimal. This means that optimality does not depend on how the mass is distributed

within the support, but only on the support itself.

Remark 3.4.4. In theorem 3.4.1 we showed that for every optimal γ, there exists a c-concave function

ψ such that supp(γ) ⊂ ∂cψ. Actually, an ever stronger statement holds true: For any other optimal

transport plan γ̃, we have supp(γ̃) ⊂ ∂cψ with the same function ψ. Indeed,∫
X
ψ(x) dµ(x) +

∫
Y
ψc(y) dν(y) =

∫
X×Y

ψ(x) + ψc(y) dγ̃(x, y)

≤
∫
X×Y

c(x, y) dγ̃(x, y)

=

∫
X×Y

c(x, y) dγ(x, y)

=

∫
X×Y

ψ(x) + ψc(y) dγ(x, y),

hence the inequality is an equality which means (x, y) ∈ ∂cψ γ̃-surely. By continuity of c, it follows

supp(γ̃) ⊂ ∂cψ.

Remark 3.4.5. As we have seen in theorem 3.2.9, continuity of c is not needed for an optimal

transport plan to exist, lower semicontinuity suffices. So one might wonder whether theorem 3.4.1

carries over to this setting. This is, in general, not the case. One can show that, under the same

assumptions on c as in theorem 3.4.1 with continuity replaced by lower semicontinuity, the following

implication holds: If γ ∈ Π(µ, ν) is optimal, then it is concentrated on a c-cyclically monotone set.

However, this set need not be closed in general, hence the support of γ does not equal this set.

3.5 Duality Theorem

We are now ready to prove that the infimum in the primal Kantorovich problem and the supremum

in the dual problem coincide under the same assumptions as in theorem 3.4.1.

3.5 Duality Theorem 27

Theorem 3.5.1 (Duality Theorem). Let (X , µ) and (Y, ν) be two Polish probability spaces and c :

X × Y → R a continuous and bounded from below cost function such that

c(x, y) ≤ a(x) + b(y) for all (x, y) ∈ X × Y

for some a ∈ L1(µ), b ∈ L1(ν). Then there is duality:

inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ(x, y) = sup
(ψ,ϕ)∈L1(µ)×L1(ν)

ψ+ϕ≤c

∫
X
ψ(x) dµ(x) +

∫
Y
ϕ(y) dν(y). (8)

Furthermore, both the infimum and the supremum are attained, and the maximizing couple (ψ,ϕ) in

the supremum is of the form (ψ,ψc) for some c-concave function ψ.

Proof. In theorem 3.2.9, we proved, under even milder assumptions on c, the existence of an optimal

transport plan for the primal problem, i.e. the left hand side in (8). As we have seen before, the

infimum on the left hand side is greater or equal than the supremum on the right hand side, see

equation (3). For the reverse inequality, let γ ∈ Π(µ, ν) be optimal. By theorem 3.4.1 and its proof,

we know there exists a c-concave function ψ such that supp(γ) ⊂ ∂cψ, max{ψ, 0} ∈ L1(µ), and

max{ψc, 0} ∈ L1(ν). This gives us

∞ >

∫
X
a(x) dµ(x) +

∫
Y
b(y) dν(y) =

∫
X×Y

a(x) + b(y) dγ(x, y) ≥
∫
X×Y

c(x, y) dγ(x, y)

=

∫
X×Y

ψ(x) + ψc(y) dγ(x, y) =

∫
X
ψ(x) dµ(x) +

∫
Y
ψc(y) dν(y)

and as c is bounded from below, this gives us ψ ∈ L1(µ) and ψc ∈ L1(ν) which proves that (ψ,ψc) is

an admissible couple for the dual problem. This proves the reverse inequality and in particular, as∫
X×Y

c(x, y) dγ(x, y) =

∫
X
ψ(x) dµ(x) +

∫
Y
ψc(y) dν(y),

shows that (ψ,ψc) is optimal for the dual problem.

Remark 3.5.2. Again, an ever stronger statement holds true: For any c-concave maximizing couple

(ψ,ψc) and any optimal γ ∈ Π(µ, ν) we have supp(γ) ⊂ ∂cψ: By theorem 3.4.1 and its proof, we know

that there exists some c-concave ψ̃ such that ψ̃ ∈ L1(µ), ψ̃c ∈ L1(ν) and supp(γ) ⊂ ∂cψ̃. This yields∫
X
ψ(x) dµ(x) +

∫
Y
ψc(y) dν(y) ≥

∫
X
ψ̃(x) dµ(x) +

∫
Y
ψ̃c(y) dν(y) =

∫
X×Y

ψ̃(x) + ψ̃c(y) dγ(x, y)

=

∫
X×Y

c(x, y) dγ(x, y) ≥
∫
X×Y

ψ(x) + ψc(y) dγ(x, y)

=

∫
X
ψ(x) dµ(x) +

∫
Y
ψc(y) dν(y),

hence there must be equality which shows supp(γ) ⊂ ∂cψ. In particular, this shows that any admissible

couple (ψ̃, ψ̃c) for the dual for which we have supp(γ) ⊂ ∂cψ̃ for an optimal γ is in fact optimal. This

means also the c-concave function ψ appearing in theorem 3.4.1 is optimal for the dual problem.

Remark 3.5.3. Again, we can ask ourselves whether or not theorem 3.5.1 carries over to the setting

28 3 OPTIMAL TRANSPORT

where c is only lower semicontinuous. Indeed, under the same assumptions on c with continuity

replaced by lower semicontinuity, the duality between the optima in the primal and dual problem

still holds. However, it is not guaranteed to be attained by a couple (ψ,ψc) of c-concave functions

anymore.

Remark 3.5.4. The proof of theorem 3.5.1 shows that we not only have max{ψ, 0} ∈ L1(µ), but

actually ψ ∈ L1(µ) and ψc ∈ L1(ν) for the function ψ appearing in (iii) of theorem 3.4.1

3.6 Wasserstein Distances

This section deals with the special case where X = Y. This allows one to use the metric on X
for the cost function, giving rise to Wasserstein distances. This means we will shift our attention

now; so far we had been interested in the minimizer of the optimal transport problem. Now we are

interested in the minimum. As it turns out, this minimum defines a metric between the origin and

target distribution.

Definition 3.6.1 (Wasserstein Space, Wasserstein Distance). Let (X , d) be a Polish space and p ∈
[1,∞). Then the Wasserstein space of order p is defined as:

Pp(X) =

{
µ ∈ P (X) :

∫
X
d(x0, x)p dµ(x) <∞

}
for an arbitrary x0 ∈ X .7

For µ, ν ∈ Pp(X) the Wasserstein distance of order p between µ and ν is defined as

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
X×X

d(x, y)p dγ(x, y)

) 1
p

.

Remark 3.6.2. The terminology in the literature is not very coherent. Wasserstein distances had

been discovered and rediscovered by multiple authors over the span of the twentieth century, including

Wasserstein whose name is actually spelled ”Vasershtein”; so ”Wasserstein” as a name is very doubtful

for that reason alone. Other names, such as ”Wasserstein metric” or ”Kantorovich distance”, also

exist. In particular, the distance W1 for the case p = 1 is known under different names as well, such as

”Kantorovich-Rubinstein distance” or, more recently and mostly in image processing and computer

science, ”Earth Mover’s distance”.

Example 3.6.3. The Wasserstein distances induce some intuitive properties from a human point

of view, such as when it comes to Wasserstein barycenters. A Wasserstein barycenter of measures

{µ1, ..., µn} ⊂ Pp(X) is any measure µ ∈ Pp(X) such that

µ = arg min
µ′∈Pp(X)

n∑
i=1

W p
p (µ′, µi).

7Note that the space does not depend on the choice of x0.

3.6 Wasserstein Distances 29

Now assume you have two images of the digit 1, one on the left hand side of the image, the other

on the right, and you are looking for an ’average 1’ between the two. If you were to simply average

over all pixels, you would get two transparent ones on both sides of the image – not a good solution.

However, in the case p > 1, the unique Wasserstein barycenter would be a 1 in the middle of the

image, which is consistent with what one would intuitively consider to be the average 1 (cmp. figure

3). Note that for the case p = 1, the Wasserstein barycenter would not be unique anymore, and both

the two transparent ones as well as the 1 in the middle would indeed be Wasserstein barycenters.

Figure 3: Two images of a 1 (left and second from left), their pixel average (second from right) and
their unique Wasserstein barycenter for p > 1.

Remark 3.6.4 (Special Case W1). In the case p = 1 the Wasserstein distance takes another special

form. We know from theorem 3.5.1 that

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
X×X

d(x, y) dγ(x, y) = sup
ψ∈L1(µ)
ψ c-concave

∫
X
ψ(x) dµ(x) +

∫
X
ψc(x) dν(x).

In example 3.3.4, we saw that in the case c(x, y) = d(x, y), being c-concave is actually equivalent

to being 1-Lipschitz. Furthermore, we saw that in this case, ψc = −ψ. This gives us the following

formula for W1(µ, ν):

W1(µ, ν) = sup
ψ 1-Lipschitz

∫
X
ψ(x) dµ(x)−

∫
X
ψ(x) dν(x).

In particular, we see that the value of W1(µ, ν) does not really depend on µ and ν; it only depends

on their difference µ− ν.

Example 3.6.5. In the special case µ = δx for some x ∈ X and ν = δy for some y ∈ Y, we have

Wp(δx, δy) = d(x, y). In particular, Wp(δx, δy) does not depend on p which is generally not the case.

Next, we will show that, as the name suggests, Wp defines a metric on Pp(X). To prove this result,

we need the following lemma.

Lemma 3.6.6 (Gluing). Let (Xi, µi), i ∈ J3K, be Polish probability spaces and γ12 ∈ Π(µ1, µ2) and

γ23 ∈ Π(µ2, µ3) be transport plans. Then there exists a probability measure γ ∈ P (X1 ×X2 ×X3) with

marginals γ12 on X1×X2 and γ23 on X2×X3. In particular, this means γ has marginals µi on Xi for

i ∈ J3K.

30 3 OPTIMAL TRANSPORT

Proof. Let X and Y be any Polish probability spaces and γ ∈ P (X × Y) with γ ◦ π−1
1 = µ for some

µ ∈ P (X). Let πX : X × Y → X be the usual projection. By the disintegration theorem A.17 we can

find measures (γx) ⊂ P (X × Y) for x ∈ X which are µ-almost uniquely defined s.t.

0 = γx
(
(X × Y) \ π−1

X (x)
)

= γx ((X × Y) \ ({x} × Y)) µ-almost everywhere,

i.e. the measures γx are concentrated on the fibres {x}×Y a.e., meaning we can from now on consider

γx to be a measure on Y, and s.t. for any φ : X × Y → [0,∞] we have∫
X×Y

φ(x, y) dγ(x, y) =

∫
X

∫
Y
φ(x, y) dγx(y) dµ(x).

We will write this as

γ =

∫
X
δx ⊗ γx dµ(x).

Now disintegrating γ12 and γ23 both with respect to µ2 gives us measures (γ12,x2)x2∈X2 ⊂ P (X1) and

(γ23,x2)x2∈X2 ⊂ P (X3) such that

γ12 =

∫
X2

δx2 ⊗ γ12,x2 dµ2(x2) and γ23 =

∫
X2

δx2 ⊗ γ23,x2 dµ2(x2).

Set

γ :=

∫
X2

γ12,x2 ⊗ δx2 ⊗ γ23,x2 dµ2(x2).

Then γ ∈ P (X1 ×X2 ×X3). For φ : X1 ×X2 ×X3 → [0,∞] we have∫
X1×X2×X3

φ(x1, x2, x3) dγ(x1, x2, x3) =

∫
X2

∫
X1×X3

φ(x1, x2, x3) dγ12,x2 ⊗ γ23,x2(x1, x3) dµ2(x2).

If φ(x1, x2, x3) = φ(x1, x2) is a function only depending on x1 and x2, this gives us∫
X1×X2×X3

φ(x1, x2) dγ =

∫
X2

∫
X1×X3

φ(x1, x2) dγ12,x2 ⊗ γ23,x2(x1, x3) dµ2(x2)

=

∫
X2

∫
X1

φ(x1, x2) dγ12,x2(x1) dµ2(x2)

=

∫
X1×X2

φ(x1, x2) dγ12(x1, x2),

and as this holds in particular for test functions φ ∈ Cb(X1 × X2), lemma A.19 implies that γ admits

γ12 as its marginal on X1 ×X2. Similarily, one shows that the marginal of γ on X2 ×X3 is γ23, which

finishes the proof.

We are now ready to prove that the Wasserstein distance indeed defines a metric on the Wasserstein

space.

Theorem 3.6.7 (Wasserstein Distance is a Metric). Let (X , d) be a Polish space and p ∈ [1,∞).

Then Wp defines a metric on Pp(X).

Proof. Letting µ1, µ2, µ3 be arbitrary elements of Pp(X), we need to prove four properties:

(i) Wp is finite and nonnegative,

3.6 Wasserstein Distances 31

(ii) Wp(µ1, µ2) = 0 if and only if µ1 = µ2,

(iii) Wp(µ1, µ2) = Wp(µ2, µ1),

(iv) Wp(µ1, µ3) ≤Wp(µ1, µ2) +Wp(µ2, µ3).

Regarding (i), we have for any µ, ν ∈ Pp(X), any γ ∈ Π(µ, ν) and any z ∈ X (cmp. lemma A.12):∫
X×X

d(x, y)p dγ(x, y) ≤ 2p
∫
X×X

d(x, z)p + d(z, y)p dγ(x, y)

= 2p
∫
X
d(x, z)p dµ(x) + 2p

∫
X
d(z, y)p dν(y) <∞.

Also, by definition, Wp is nonnegative. This proves (i).

Regarding (ii), note that the implication ”µ1 = µ2 ⇒ Wp(µ1, µ2) = 0” is trivial. For the reverse

implication, let Wp(µ1, µ2) = 0. We need to show µ1 = µ2. Let γ ∈ Π(µ1, µ2) be an optimal transport

plan (which exists by theorem 3.2.9). Then

0 = Wp(µ1, µ2) =

(∫
X×X

d(x, y)p dγ(x, y)

) 1
p

,

which implies γ has to be concentrated on the diagonal {(x, y) ∈ X × X : x = y}. This means for

any test function φ ∈ Cb(X) we have∫
X
φ(x) dµ1(x) =

∫
X×X

φ(x) dγ(x, y) =

∫
X×X

φ(y) dγ(x, y) =

∫
X
φ(y) dµ2(y),

which gives us µ1 = µ2 (cmp. lemma A.19). This proves (ii).

Next up, (iii) trivially holds by definition.

Regarding (iv), let γ12 ∈ Π(µ1, µ2) and γ23 ∈ Π(µ2, µ3) be optimal transport plans (which again exist

by theorem 3.2.9). Let Xi := X for i ∈ J3K and define γ as in the gluing lemma 3.6.6, i.e.

γ :=

∫
X2

γ12,x2 ⊗ δx2 ⊗ γ23,x2 dµ2(x2).

Let γ13 be the marginal of γ on X1 × X3. Then γ13 ∈ Π(µ1, µ3), but it is not necessarily optimal. It

holds

Wp(µ1, µ3) ≤
(∫
X1×X3

d(x1, x3)p dγ13(x1, x3)

) 1
p

=

(∫
X1×X2×X3

d(x1, x3)p dγ(x1, x2, x3)

) 1
p

≤
(∫
X1×X2×X3

(d(x1, x2) + d(x2, x3))p dγ(x1, x2, x3)

) 1
p

≤
(∫
X1×X2×X3

d(x1, x2)p dγ(x1, x2, x3)

) 1
p

+

(∫
X1×X2×X3

d(x2, x3)p dγ(x1, x2, x3)

) 1
p

=

(∫
X1×X2

d(x1, x2)p dγ12(x1, x2)

) 1
p

+

(∫
X2×X3

d(x2, x3)p dγ23(x2, x3)

) 1
p

= Wp(µ1, µ2) +Wp(µ2, µ3),

32 3 OPTIMAL TRANSPORT

where in the fourth step we used Minkowski’s inequality (cmp. proposition A.20).

An interesting property of the metric space (Pp(X),Wp), which we will state here without proof (as

the proof requires a lot of preparation), is that it is Polish if X is. A proof can be found in [41],

theorem 6.18.

Theorem 3.6.8. If X is a Polish probability space and p ∈ [1,∞), then (Pp(X),Wp) is a Polish space

as well.

3.7 Discrete Optimal Transport

In this section, we will have a look at how the optimal transport problem changes when both measures

are discrete probability measures on finite, discrete spaces. This is of particular interest, as we will

be dealing with optimal transport between two-dimensional black and white images later on. These

images can easily be converted to discrete probability distributions: Say you are given an image

Q ∈ Rm×n≥0 , where qij corresponds to the value of a single pixel, i.e. the higher qij , the more color the

pixel contains. Then by setting X := {x1, ..., xmn}, we can define a measure µ corresponding to Q by

setting

µ =
mn∑
k=1

vec(Q)k∑
i,j qij

δxk ,

where oftentimes vec(Q) will actually be considered to be the vector of concatenated rows of Q, instead

of the columns, in practice.

We will see that the OT problem reduces to a classical linear program, hence all methods and algo-

rithms known in linear programming can be applied in the discrete OT setting as well. This section

is partly based on [33].

We will start off with formulating the OT problem in the discrete setting. Let X = {x1, ..., xm}
and Y = {y1, ..., yn} for some n,m ∈ N>0. Both spaces are equipped with the discrete topologies

T (X) = 2X and T (Y) = 2Y resp., i.e. the Borel σ-algebras are equal to these power sets of X and Y:

B(X) = T (X), B(Y) = T (Y). Further let µ ∈ ∆m−1 and ν ∈ ∆n−1 in the probability simplex. We

will slightly abuse notation in the following, interchangeably considering µ and ν to be these vectors

as well as the measures associated with them, namely
∑

i µiδxi ,
∑

j νjδyj . This will make the notation

a lot more readable. Let c : X ×Y → R be a cost function and set cij := c(xi, yj) for i ∈ JmK, j ∈ JnK.
Then the Kantorovich problem 3.2.1 becomes:

Problem 3.7.1 (Discrete Optimal Transport Problem).

min
γ∈Rm×n≥0

〈c, γ〉

s.t. γ1n = µ

γ>1m = ν

Similarily, the dual problem 3.3.1 reads:

3.7 Discrete Optimal Transport 33

Problem 3.7.2 (Discrete Dual Optimal Transport Problem).

max
f∈Rm, g∈Rn

〈f, µ〉+ 〈g, ν〉

s. t. f + g ≤ c

Note that the discrete equivalent of Π(µ, ν) becomes

Π(µ, ν) =

γ ∈ Rm×n≥0 :
∑
j

γij = µi for all i ∈ JmK,
∑
i

γij = νj for all j ∈ JnK

 .

This set is a polytope, as can more easily be seen from the following reformulation of the problem. In

order to rewrite problem 3.7.1 in matrix-vector form, we set Γ := [γij]ij ∈ Rm×n, γ := vec(Γ) ∈ Rmn,

C := [cij]ij ∈ Rm×n and c := vec(C) ∈ Rmn. Furthermore, set (cmp. section 2 for notations)

A :=

[
1>n ⊗ Im
In ⊗ 1>m

]
∈ R(m+n)×mn, b =

[
µ

ν

]
∈ Rm+n.

Then we can reformulate problem 3.7.1 as follows:

min
γ∈Rmn

〈c, γ〉

s.t. Aγ = b, (9)

γ ≥ 0,

which is nothing else but a regular linear program (see e.g. equation (1.3) in [7], p. 4). We can also

easily verify that the discrete dual problem 3.7.2 turns into the dual linear program. If we let ψ ∈ Rm

and φ ∈ Rn and set y =
[
ψ> φ>

]>
, 3.7.2 becomes:

max
y∈Rm+n

〈y, b〉

s.t. y>A ≤ c>

This is exactly the dual linear program to 9 (cmp. [7], p. 143 for a definition of the dual linear

program).

Now a standard result in linear programming states that the optimum of a linear program is attained

at a vertex of the polytope to be optimized over.8 This can e.g. be found as Theorem 2.7. in [7], p.

65. Using this property, we can prove the following proposition.

Proposition 3.7.3. Let P ∈ Π(µ, ν) be a vertex of the polytope of feasible measures to problem 3.7.1.

Then P does not have more than m + n − 1 nonzero entries. In particular, there exists an optimal

solution to problem 3.7.1 with at most m+ n− 1 nonzero entries.

Proof. Define V = {1, ...,m}, V ′ = {1′, ..., n′} as two sets of nodes9 and let G = (V ∪ V ′, E) be

8Under some additional assumptions. These assumptions can for example be: There exists an optimal solution, and
the polytope has at least one vertex. Both of these are fulfilled in our case.

9The primes in V ′ are simply meant to be able to disambiguate its elements from elements in V .

34 3 OPTIMAL TRANSPORT

a directed graph with E := {(i, j′) : i ∈ JmK, j ∈ JnK}. Let P be a vertex of Π(µ, ν). Then P

corresponds to a ”flow” in G, where we associate Pij with the flow on (i, j′) ∈ E. Let EP ⊂ E be the

edges where P > 0. Now, if we can show that (V ∪ V ′, EP) contains no undirected cycles, this proves

that P has at most m+n− 1 nonzero entries as any graph with k nodes and no cycles can contain at

most k − 1 edges.

Assume for the sake of contradiction that P does contain a cycle, i.e. there exists some k ∈ N, k ≥ 2,

and indices il ∈ JmK, jl ∈ JnK for l ∈ Jk − 1K, such that

H := {(i1, j′1), (i2, j
′
1), (i2, j

′
2), ..., (ik, j

′
k), (i1, j

′
k)} ⊂ EP .

Consider the directed cycle

H̄ := {(i1, j′1), (j′1, i2), (i2, j
′
2), ..., (ik, j

′
k), (j

′
k, i1)}.

Let ε > 0 such that ε < min(i,j′)∈EP Pij . Let E ∈ Rm×n be defined by Eij = ε if (i, j′) ∈ H̄, Eij = −ε
if (j′, i) ∈ H̄ and Eij = 0 otherwise. Note that E1n = 0 and E>1m = 0 by construction. Now define

Q = P + E and R = P − E , see figure 4.

Figure 4: Constructing two transport plans Q and R from P .10

Then by construction, Q,R ≥ 0 (entry-wise) and the marginals of Q and R equal those of P , hence

Q,R ∈ Π(µ, ν). This means P = Q+R
2 with Q 6= P 6= R, which contradicts P being a vertex.

Finally, note that as mentioned earlier, the optimum of problem 3.7.1 will occur at a vertex of Π(µ, ν)

(cmp. Theorem 2.7. in [7], p. 65), hence there is an optimal solution with at most m+ n− 1 nonzero

entries.

Leveraging this property, there exist multiple algorithms which can solve problem 3.7.1 precisely. For

example, the Network Simplex Algorithm is a version of the well-known Simplex Algorithm which works

particularily well in this case, cmp. also [33], chapter 3.5. It makes use of the dual formulation in

the discrete case and iteratively improves a feasible solution for the primal until it reaches optimality.

Orlin [31] was able to prove a polynomial complexity bound on the algorithm which was shortly after

improved by Tarjan [39] in 1997. However, once X and Y become high-dimensional (a few hundred

upwards), this algorithm tends to be prohibitively slow. Other algorithms exist, such as the Hungarian

Algorithm [27] or the Auction Algorithm [6], but none of them tends to be fast in high-dimensional

spaces. This is why Cuturi proposed a different approach in his seminal work [11]: The so-called

Sinkhorn Algorithm. We will see how it works in the following chapter.

10Source: [33], figure 3.1.

35

4 Sinkhorn Algorithm

In this section, we get to know the Sinkhorn algorithm, an iterative algorithm which computes an

approximation of the transport plan and cost of the discrete optimal transport problem 3.7.1. We will

discuss its advantages and disadvantages and pay particular attention to its initialization. Again, let

X = {x1, ..., xm} and Y = {y1, ..., yn} for some n,m ∈ N>0 be two discrete spaces equipped with the

discrete topologies T (X) = 2X and T (Y) = 2Y resp. Furthermore, let µ ∈ ∆m−1 and ν ∈ ∆n−1 in

the probability simplex, and and as in section 3.7 we consider µ and ν to be the measures
∑

i µiδxi ,∑
j νjδyj when needed. Let c : X × Y → R be a cost function and set cij := c(xi, yj) for i ∈ JmK,

j ∈ JnK. The idea underlying the Sinkhorn algorithm is to introduce an entropic regularizer to the

optimal transport problem. This will alter the problem and its solution, which means we will not be

finding solutions to our regular optimal transport problem 3.7.1 anymore, but merely approximations.

This drawback can be justified by the fact that the entropic problem comes with many useful properties

the regular problem does not have.

4.1 Entropic Optimal Transport

Definition 4.1.1 (Entropy). For a matrix P = [pij]ij ∈ Rm×n, we define its entropy H(P) as

H(P) := −
m∑
i=1

n∑
j=1

pij(log pij − 1)

if all entries are positive, and H(P) := −∞ if at least one entry is negative. For entries pij = 0, we

use the convention 0 log 0 = 0, as x log x
x→0−−−→ 0.

Remark 4.1.2. Note that for transport plans, this notion reduces to 1−
∑m

i=1

∑n
j=1 pij log pij . The

definition of entropy is not consistent in the literature. Our definition is similar to the definition in

[33].11 Other definitions exist, such as H(P) = −
∑

i,j pij log pij , which can e.g. be found in [11]. Also,

the basis of the logarithm does not really matter, as it will only alter the entropy by a constant, and

we will see later on that such scaling is irrelevant for our applications. However, the usual convention

is to use log2 or ln.

Remark 4.1.3. Entropy is a concept that also exists in physics. There, it measures the randomness

or disorder of a system. At maximum entropy, the system reaches a stable state of equilibrium. The

mathematical entropy can be thought of in a similar manner: Let’s assume P is a transport plan. Then

the transport plan of maximal entropy is the trivial coupling (remark 3.1.3), which can be thought of

as an equilibrium.

11In [33], H(P) := −∞ also if an entry is merely equal to 0. However, it seems like this might be a typo, as with this
definition of entropy, some of the results in [33] would not hold.

36 4 SINKHORN ALGORITHM

With entropy at hand, we can now define the entropic OT problem.

Problem 4.1.4 (Entropic Optimal Transport Problem). For ε > 0, the entropic optimal transport

problem is defined as:

Lε(µ, ν) := min
γ∈Π(µ,ν)

〈c, γ〉 − εH(γ). (10)

The term −εH(γ) is referred to as the entropic regularizer, and ε as the regularizing constant.

Remark 4.1.5. As the entropy is a 1-strongly convex function12 on all transport plans (since ∂2H(P) =

−diag(1
pij

) and pij ≤ 1), the objective in (10) is ε-strongly convex and hence admits a unique optimal

solution.

With ε, we can vary the impact of the regularizer on the solution. As ε→∞, the unique solution to

(10) converges to the transport plan of maximum entropy, which, as we just saw, is the trivial coupling,

and as ε→ 0, the solution to (10) indeed converges to the maximum entropy optimal coupling of the

unregularized problem.13

Proposition 4.1.6. Let γε be the unique solution to problem 4.1.4 for ε > 0. Then

γε
ε→0−−−→ arg min

{
−H(γ) : γ ∈ Π(µ, ν), 〈c, γ〉 = min

γ′∈Π(µ,ν)
〈c, γ′〉

}
(11)

and

γε
ε→∞−−−→ µν>.

Proof. This proof follows that of proposition 4.1 in [33]; note, however, that for this proof to work, we

need to have H defined as in definition 4.1.1 and not as in [33]. Consider a sequence (εl)l∈N in R>0

s.t. εl
l→∞−−−→ 0. Denote by γl the unique solution to problem 4.1.4 for ε = εl. Since Π(µ, ν) is bounded,

we can extract a subsequence (which we will also denote by (γl)l for simplicity) which converges to

some γ? ∈ Rm×n, and since Π(µ, ν) is closed we have γ? ∈ Π(µ, ν). Now let γ ∈ Π(µ, ν) be optimal

for the unregularized primal problem 3.7.1. By optimality of γ for 3.7.1 and optimality of γl for 4.1.4,

we have

0 ≤ 〈c, γl〉 − 〈c, γ〉 ≤ εl(H(γl)−H(γ)). (12)

Since H is continuous, we know that H(γl) −H(γ) is bounded, and taking the limit l → ∞ in (12)

shows that 〈c, γ?〉 = 〈c, γ〉, i.e. γ? is feasible for (11). Dividing by εl in (12) and taking the limit

again shows that H(γ) ≤ H(γ?), which again follows from continuity of H. Also, since the solution

to problem 4.1.4 is unique for any ε by strict convexity of H, and since H is continuous, the entire

sequence γl has to converge to γ? (and not just a subsequence). For the limit ε→∞, a similar proof

shows that one can consider the problem

min
γ∈Π(µ,ν)

−εH(γ)

instead, which is solved by µν>.

12A function f is called l-strongly convex if l ‖x− y‖22 ≤ (∇f(x)−∇f(y))>(x− y) for all x, y.
13We will refer to the regular optimal transport problem as the unregularized one, while problem 4.1.4 will interchange-

ably be called the entropic or the regularized problem.

4.1 Entropic Optimal Transport 37

Remark 4.1.7. With a different definition to the entropic optimal transport problem, Cuturi [11]

showed that, similar to the Wasserstein distances, the optimal value of the entropic problem defines

a metric on the distributions (cmp. [11], theorem 1; a slight modification in multiplying the value by

1µ6=ν is needed in order to ensure that it takes the value 0 if and only if µ = ν).

Definition 4.1.8 (Gibbs Kernel). For a cost function c ∈ Rm×n and a regularizing constant ε > 0,

we define the Gibbs kernel K ∈ Rm×n of c via

Kij = exp
(
−cij
ε

)
, i ∈ JmK, j ∈ JnK.

The unique solution of (10) always takes a particular form.

Proposition 4.1.9 (Solution of Entropic Optimal Transport). The solution of (10) is unique and

takes the form

γij = uiKijvj , i ∈ JmK, j ∈ JnK, (13)

where K is the Gibbs kernel and u ∈ Rm>0 and v ∈ Rn>0 are two positive vectors uniquely defined up to

a scaling constant (i.e. scaling u by some λ > 0 and v by 1
λ).

Proof. The idea of the proof is to use Lagrange multipliers to derive equation (13) (cmp. proposition

A.21). As the entropy of γ in problem 4.1.4 becomes −∞ once some element in γ is negative, we can

drop the constraint that γ ≥ 0 and are left with the constraints γ1n = a and 1>mγ = b>. This means

we have m+ n equality constraints. Writing the equality constraints as functions hi : Rm×n → R for

i ∈ Jm+ nK,

hi(γ) :=

n∑
j=1

γij − ai, i ∈ JmK, hm+j(γ) :=

m∑
i=1

γij − bj , j ∈ JnK,

we can see that the gradients ∇hi(γ) for i ∈ Jm+n−1K are linearly independent, regardless of whether

γ is optimal or not, as

(∇hk(γ))ij =

1, i = k

0, i 6= k
, k ∈ JmK, (∇hm+k(γ))ij =

1, j = k

0, j 6= k
, k ∈ JnK, (14)

i.e. they are equal to the m + n m × n-dimensional matrices where exactly one row resp. column is

equal to 1, and all other entries are equal to 0. Note that adding ∇hm+n(γ) would indeed make the

gradients linearly dependent, however. Now we can write the objective in (10) in terms of a function

F : Rm×n → R via

F (γ) :=

〈γ,C + ε log γ − ε〉, γij ≥ 0 for all i ∈ JmK, j ∈ JnK,

∞, otherwise,

again with the convention 0 log 0 = 0. We can assume without loss of generality that we are only

dealing with matrices γij ≥ 0 for all i ∈ JmK, j ∈ JnK, as mentioned earlier. Now assume that γ is

optimal for (10). By proposition A.21, we know there exist unique Lagrange multipliers f ∈ Rm and

38 4 SINKHORN ALGORITHM

g̃ ∈ Rn−1 such that14

∇F (γ) +

m∑
i=1

fi∇hi(γ) +

n−1∑
j=1

gj∇hm+j(γ) = 0.

Computing

∇F (γ) = ∇γ〈γ,C + ε log γ − ε〉C + ε(log γ + 1)− ε = C + ε log γ,

and using (14) we get

Cij + ε log γij + fi + gj = 0 for all i ∈ JmK, j ∈ Jn− 1K, (15)

Cin + ε log γin + fi = 0 for all i ∈ JmK, (16)

which is equivalent to

γij = efi/εe−cij/εegj/ε for all i ∈ JmK, j ∈ Jn− 1K,

γij = efi/εe−cij/ε for all i ∈ JmK.

Hence, setting gn = 0, we get

γ = diag(ef/ε)Kdiag(eg/ε),

and setting u := f/ε and v := g/ε gives us a representation as in (13). Also note that uniqueness of

u and v up to a scaling constant immediately follows from the proof: We showed that for gn = 0, i.e.

vn = 1, this representation is unique. If we chose a different value for gn, say, k ∈ R, then from (16) it

follows that we have to deduct k from all fi, i ∈ JmK. Then, in turn, it follows from (15) that we have

to add k to all gj , j ∈ Jn − 1K. Hence, this again gives us a unique solution, where we added k to g

and subtracted it from f , which corresponds to multiplying v by ek/ε and u by its inverse e−k/ε.

As does the unconstrained problem, the entropic version also comes with its own dual problem. We

will derive it using methods from nonlinear programming (cmp. [5], particularily chapter 5.1,15 and

also [30]). The Lagrangian associated with problem 4.1.4, in the primal variable γ and the dual

variables f and g, reads

L(γ, f, g) = 〈c, γ〉+ ε〈γ, log γ − 1〉+ 〈f, µ− γ1n〉+ 〈g, ν − γ>1m〉.

This gives us

Lε(µ, ν) = inf
γ

sup
f,g
L(γ, f, g),

and the dual problem can be obtained by interchanging the infimum and supremum:

Dε(µ, ν) = sup
f,g

min
γ

∑
ij

γij (cij + ε log γij − ε− fi − gj) +
∑
i

fiµi +
∑
j

gjνj . (17)

14We choose a different sign for the Lagrange multipliers than in proposition A.21 because this way, it will turn out
that f and g are actually the dual potentials from the entropic dual problem 4.1.10, as we will soon see.

15Linear and nonlinear programs always come in various flavours. In this chapter, Bertsekas considers inequality
constraints gj(x) ≤ 0. Since we are dealing with equality constraints in our case, one can simply expand the inequality
constraints by further inequality constraints −gj(x) ≤ 0, which is then equivalent to our equality constraints. This means
one can drop assumptions like the Lagrange multiplier vector being nonnegative – cmp. 5.1.1 in [5] – or the inequality
constraints on the dual problem therein, see 5.1.2.

4.1 Entropic Optimal Transport 39

Since for a given pair (f, g), we take the minimum over all transport plans γ, first-order conditions

yield

cij − fi − gj + ε log γij = 0,

i.e. γij = efi/εe−cij/εeg/ε for all i ∈ JmK, j ∈ JnK,

similarly to what we have seen in the proof of proposition 4.1.9. Plugging this back into (17) yields

the following dual problem:

Problem 4.1.10 (Entropic Dual Problem). The entropic dual problem is defined as:

Dε(µ, ν) := max
f∈Rm, g∈Rn

〈f, µ〉+ 〈g, ν〉 − ε
〈
ef/ε,Keg/ε

〉
.

Proposition 4.1.11. There exists an optimal solution to the dual 4.1.10 and there is duality, i.e.

Lε(µ, ν) = Dε(µ, ν). (18)

Furthermore, vectors u and v as in proposition 4.1.9 and optimal f , g for problem 4.1.10 are linked

via

(u, v) = (ef/ε, eg/ε). (19)

Proof. We know that Lε(µ, ν) ≥ Dε(µ, ν) (cmp. proposition 5.1.3 in [5]). Hence, it suffices to show

that there exist optimal γ for the primal and (f, g) for the dual such that there is equality in order to

prove duality as in (18). Let γ be optimal for the primal problem 4.1.4. By proposition 4.1.9 and its

proof we know that we then have for some f ∈ Rm and g ∈ Rn:

Lε(µ, ν) =
〈
c,diag(ef/ε)Kdiag(eg/ε)

〉
+ ε

〈
diag(ef/ε)Kdiag(eg/ε), log diag(ef/ε)Kdiag(eg/ε)− 1

〉
=
〈
c,diag(ef/ε)Kdiag(eg/ε)

〉
+
〈

diag(ef/ε)Kdiag(eg/ε), f1>n + 1mg
> − c− ε

〉
=
〈

diag(ef/ε)Kdiag(eg/ε), f1>n + 1mg
> − ε

〉
= 〈f, µ〉+ 〈g, ν〉 − ε

〈
ef/ε,Keg/ε

〉
.

This shows that (f, g) is an optimizer of the dual problem 4.1.10, and (19) holds as well, which follows

from the representation of the optimal plan in (13) in proposition 4.1.9.

Remark 4.1.12. Again, the solution to the dual is not unique, as one can replace f by f − k and g

by g + k for a constant k ∈ R. Note that the link between the scaling vectors and the dual solution

enables us to recover the optimal transport plan γ for the entropic primal from a solution (f, g) to the

dual:

γij = e(fi+gj−cij)/ε,

which follows immediately from the representation of γ in proposition 4.1.9 and proposition 4.1.11.

This is a useful property that the unregularized problem did not have, and one we will make use of.

A solution (f, g) of the unregularized problem 3.7.2 approximates the solution of the regularized dual

in the following sense.

40 4 SINKHORN ALGORITHM

Proposition 4.1.13. Let (f, g) be a solution to the unregularized dual problem 3.7.2 and (f ε, gε)

a solution to the regularized dual problem 4.1.10 for some ε > 0. Then (f ε, gε) is feasible for the

unregularized problem, i.e. f ε + gε ≤ c, and

0 ≤ Dε(µ, ν)−
[
〈f, µ〉+ 〈g, ν〉 − ε

〈
ef/ε,Keg/ε

〉]
≤ mnε,

i.e. the value the entropic dual takes at (f, g) differs from the optimal value by at most a factor of

mnε. In particular, if ε → 0, the optimum of the entropic dual converges to its value at (f, g), and

the value the unregularized dual takes at (f ε, gε) converges to its optimum, i.e.

〈f ε, µ〉+ 〈gε, ν〉 ε→0−−−→ 〈f, µ〉+ 〈g, ν〉. (20)

Proof. Let γ be the solution of the entropic primal problem. As we have

1 ≥ γij = e(fεi +gεj−cij)/ε for all i ∈ JmK, j ∈ JnK,

it follows that f εi + gεj − cij ≤ 0 for all i and j, i.e. f ε + gε ≤ c. This makes (f ε, gε) feasible for the

unregularized dual. From optimality of (f, g) we get

〈f, µ〉+ 〈g, ν〉 ≥ 〈f ε, µ〉+ 〈gε, ν〉.

This gives us

Dε(µ, ν)−
[
〈f, µ〉+ 〈g, ν〉 − ε〈ef/ε,Keg/ε〉

]
=〈f ε, µ〉+ 〈gε, ν〉 − ε〈efε/ε,Kegε/ε〉 −

[
〈f, µ〉+ 〈g, ν〉 − ε〈ef/ε,Keg/ε〉

]
≤ε
[
〈ef/ε,Keg/ε〉 − 〈efε/ε,Kegε/ε〉

]
≤ε
∑
i,j

e(fi+gj−cij)/ε ≤ mnε,

where in the last step we used the fact that f +g ≤ c. Also note that the starting expression is always

greater or equal to 0 by optimality of (f ε, gε). This also implies (20), as

0 ≥ 〈f ε, µ〉+ 〈gε, ν〉 − 〈f, µ〉+ 〈g, ν〉

≥ −ε
[
〈ef/ε,Keg/ε〉 − 〈efε/ε,Kegε/ε〉

]
≥ −εmn.

4.2 Sinkhorn Algorithm 41

4.2 Sinkhorn Algorithm

Since the optimal solution γ needs to fulfill the marginal constraints, the following equalities need to

hold (where � denotes the entry-wise vector multiplication):

u�Kv = µ,

v �K>u = ν.

These equations lie at the heart of the Sinkhorn-Knopp fixpoint iteration, which iteratively finds the

solution from proposition 4.1.9. Upon initialization of v0 ∈ Rn>0 (which can be initialized arbitrarily

or according to some initialization scheme), the updates of the algorithm are as follows:

ul+1 =
µ

Kvl
, vl+1 =

ν

K>ul+1
, l = 0, 1, 2, ..., (21)

where the fractions are to be understood as element-wise division. These iterations indeed converge

to the optimal solution.

Remark 4.2.1. The iterations (21) first appeared long before Sinkhorn and Knopp [38] proved their

convergence in 1967; Yule [43] mentioned them in 1912 already. They have been known under various

names such as iterative proportional fitting procedure (IPFP) [14] and RAS [4] throughout the years,

and were e.g. used to solve matching problems in economics [20], before they received a boost of

attention following Cuturi’s paper Sinkhorn distances: lightspeed computation of optimal transport

[11].

Figure 5: Top: Evolution of π
(l)
ε := diag(ul)Kdiag(vl) as l increases, for ε = 0.1, c(x, y) = |x −

y|2 and one-dimensional distributions on [0, 1]. Bottom: Impact of the regularizing constant ε on
the convergence rate of the algorithm, measured in terms of the marginal contraint violation on ν,

log
(∥∥∥1>mπ

(l)
ε − ν>

∥∥∥
1

)
.16

16Source: [33], figure 4.5.

42 4 SINKHORN ALGORITHM

Proposition 4.2.2. The iterates ul and vl as in (21) converge to the up to a constant uniquely defined

u and v in proposition 4.1.9 as l→∞.

Proof. This statement goes back to the original work of Sinkhorn and Knopp [38], where convergence

is proven. Another proof using a Hilbert projective metric can be found in [18].

Remark 4.2.3. Note that with varying initilizations v0, the limit points of ul and vl will also change

as they are only unique up to a constant. However, the limit point liml→∞ diag(ul)Kdiag(vl) will

always be the unique solution from proposition 4.1.9.

This algorithm lies at the heart of the seminal work of Cuturi [11]. The algorithm from his paper

can be seen in figure 6, while the equivalent algorithm using our iteration as above can be seen in

algorithm 1.17

Algorithm 1 Sinkhorn Algorithm

1: in c ∈ Rm×n, ε > 0, µ ∈ ∆m−1
>0 , ν ∈ ∆n−1

>0

2: initialize v0 (e.g. v0 ← 1n), l← 0, K ← e−c/ε

3: repeat
4: ul+1 ← µ./Kvl

5: vl+1 ← ν./K>ul+1

6: l← l + 1
7: until stopping criterion is met
8: γ ← diag(ul)Kdiag(vl)
9: out γ, 〈γ, c〉

Figure 6: Sinkhorn algorithm as in [11].

Cuturi uses M for c, λ for 1
ε and r, c for µ, ν. Note that his algorithm is equivalent to what we

have established; what he calls x in the iteration is 1
u for us, and he performs both updates of the

iteration in a single line. In practice, when using this algorithm to compute transport costs, one

usually implements fitting stopping criteria such as the violations on the marginal constraints, as can

also be seen in the description of figure 5.

Cuturi convincingly showed that this approach can drastically speed up computations of optimal

transport costs, in particular in higher dimensions. One main advantage is that it allows for efficient

parallelization of multiple optimal transport problems at once: Given a fixed cost c and regularizing

17The expression ’./’ denotes entry-wise division, and ’.?’ is entry-wise multiplication.

4.3 Initializing Sinkhorn’s Algorithm 43

constant ε, and a collection of pairs of distributions (µi, νi)i∈JkK, writing A :=
[
µ1 . . . µk

]
, B :=[

ν1 . . . νk

]
we can solve these problems simultaneously by initializing some V 0 ∈ Rn×k>0 and updating

U, V ∈ Rn×k>0 as follows:

U l+1 =
A

KV l
, V l+1 =

B

K>U l+1
, l = 0, 1, 2, ...

Furthermore, Sinkhorn’s algorithm allows for computations of optimal transport costs that are dif-

ferentiable in the inputs. However, the Sinkhorn algorithm comes with a few drawbacks and pitfalls.

One obvious such drawback is that the algorithm merely computes the solution to the entropic op-

timal transport problem and not the unregularized one. One can argue that in certain cases, this is

actually desirable as solutions that come from the regularized problem oftentimes come closer to what

can be observed in real life, such as traffic flow patterns [42], [15]. Also, choosing the regularizing

constant sufficiently small will ensure solutions that are close to the unregularized one. However, when

ε gets too small, this might result in entries of K being stored as zeros due to numerical rounding

errors, which in turn can cause a division by 0 in the iterative updates from (21). For similar reasons,

Sinkhorn does not support computations on distributions that contain zeros or very small values. To

some extend, these problems can be dealt with by shifting computations to the log domain. Details

can be found in [33], section 4.4.

4.3 Initializing Sinkhorn’s Algorithm

We have seen that the entropic optimal transport problem admits a unique solution, and that the

iterates from the Sinkhorn algorithm converge to the vectors u and v corresponding to that solution.

Hence, one might think that it does not matter how v0 is initialized, as the iterates are guaranteed

to converge anyways. While convergence is indeed guaranteed, initialization matters in terms of con-

vergence speed. If for example v0 is already very close to some optimal v, this initialization will lead

to much faster convergence than a random one.18 Comparatively little attention has been paid to

improving initializion of Sinkhorn’s algorithm. Thornton and Cuturi [40] propose using dual vectors

recovered from the unregularized 1D optimal transport problem, or from known transport maps in a

Gaussian setup, and were able to significantly speed up convergence. Amos et al. [2] use a learned

approach, where a neural network learns to approximate one of the two dual potentials of the (unreg-

ularized) OT problem which can then be fed into Sinkhorn’s algorithm as an initialization. While this

idea is in parts similar to what we will propose in the following chapter, there are two key differences:

Firstly, Amos et al. use a loss which is based on the Wasserstein distance approximation that the dual

potential approximation yields; we will see how exactly in section 5.5. This has the clear advantage

that you can simply minimize the loss, i.e. the negative of the Wasserstein distance approximation,

without having to know the ground truth, i.e. the actual Wasserstein distance. However, using a loss

on the Wasserstein distance instead of one on the potential directly means that vital information on

how the potential looks like can be lost resulting in less accurate approximations of the potential;

18While intuitively clear, this will also become empirically evident in section 6.

44 4 SINKHORN ALGORITHM

also see section 5.5. This might be the reason for the second key difference: In Amos et al. [2], such

networks are only trained for very specific datasets such as MNIST as their intrinsic structure allows

for much easier approximations of the potential. We will show that one can actually train a universal

network which is not dataset-dependent using a loss on the dual potential.

45

5 Sinkhorn-NN Hybrid Algorithm

We now present our Sinkhorn-NN hybrid algorithm. The main idea is: Train a neural network to

predict the dual potential of the discrete unconstrained optimal transport problem 3.7.1 and then use

that to initialize the Sinkhorn algorithm 1. First, we will have a more detailed look at the idea itself and

why it works in section 5.1, before going through the implementation in detail, with particular attention

being paid to training and testing data generation in sections 5.2 – 5.3, the network architecture in

5.4, and training in 5.6. Additionally, in section 5.5, we answer some important questions regarding

the algorithm.

As before, let X = {x1, ..., xm} and Y = {y1, ..., yn} for some n,m ∈ N>0 be two discrete spaces

equipped with the discrete topologies T (X) = 2X and T (Y) = 2Y resp. Furthermore, let µ ∈ ∆m−1

and ν ∈ ∆n−1 in the probability simplex, and as usual we will abuse notation by sometimes referring

to the measures
∑

i µiδxi ,
∑

j νjδyj by µ and ν as well. Let c : X × Y → R be a cost function and set

cij := c(xi, yj) for i ∈ JmK, j ∈ JnK. Additionally, we define K := e−c/ε for some regularizing constant

ε > 0; remember this is to be understood in an element-wise fashion, cmp. section 2.

5.1 A Trained Initialization for the Sinkhorn Algorithm

Ultimately, we want to be able to quickly approximate optima of discrete optimal transport problems.

In light of proposition 4.1.6, the entropic optimal transport problem 4.1.4 is a reasonable approximation

of the regular problem 3.7.1 for ε > 0 small enough. An efficient way to approximate the solution to

the entropic problem is the Sinkhorn algorithm 1. It converges to a tuple (u, v) of vectors from which

an optimal transport plan γ to the entropic primal problem can be recovered via γ = diag(u)Kdiag(v),

see proposition 4.2.2. Usually, the Sinkhorn algorithm is initialized with the 1-vector, as convergence

is guaranteed. However, more precise initializations can lead to much quicker convergence, as we

will see. In light of proposition 4.1.13, it is reasonable to believe that a solution (f, g) of the dual

optimal transport problem 3.7.2 can be used to compute a good starting vector v0 via v0 = eg/ε, as

we know that the limit point v of the algorithm can be written as v = eg
ε/ε for a solution (f ε, gε)

of the entropic dual problem 4.1.10, cmp. proposition 4.1.11. Hence, we will let a neural network

learn to approximate the mapping (µ, ν) 7→ (f, g) which maps two distributions to a solution of the

unregularized dual problem.19 In fact, it suffices to consider the mapping p : (µ, ν) 7→ f as we

know that at optimality, we can recover g from f via g = f c, cmp. theorem 3.5.1.20 We will do

so using training data containing ground truth dual potentials. After training is finished, given two

19Note this is not a function, as there can exist multiple optima for the dual. However, as we will see soon, we employ
multiple constrictions to reduce the degree of freedom this mapping has for a given input.

20We could also directly approximate g instead, as this is the vector used to initialize v. However, in practice,
approximating f and recovering g from it yields better results due to the fact that this ensures that g is c-concave (by
definition of c-concavity, see definition 3.3.3), as opposed to only being an approximation of a c-concave function.

46 5 SINKHORN-NN HYBRID ALGORITHM

distributions µ ∈ ∆m−1
>0 and ν ∈ ∆n−1

>0 , we can compute f ≈ net(µ, ν), g = f c, v0 = eg/ε for a given

ε > 0, and use this vector v0 as a starting vector the for Sinkhorn algorithm. However, if g contains

large or small values, this will quickly lead to entries in v0 being 0 or ∞ due to numerical rounding

errors. As we have seen, the Sinkhorn algorithm only works if v is positive everywhere, and obviously

entries being ∞ needs to be prevented as well. Hence, we will bound each entry in v0 from below by

a small constant b1 and from above by a large constant b2. A pseudocode of the Sinkhorn-NN hybrid

algorithm can be seen in algorithm 2.

Algorithm 2 Sinkhorn-NN Hybrid Algorithm

1: in c ∈ Rm×n
2: generate training data d = (µtrain, νtrain, ftrain) ∈ ∆m−1 ×∆n−1 × Rm
3: initialize netθ with (m+ n)-dim. input and m-dim. output with parameters θ
4: train netθ on d with loss(µtrain, νtrain)← MSE(netθ(µtrain, νtrain), ftrain)
5: in ε > 0, µ ∈ ∆m−1

>0 , ν ∈ ∆n−1
>0 , b1 ∈ R, b2 ∈ R

6: g ← c-transform(netθ(µ, ν))
7: v0 ← eg/ε, l← 0, K ← e−c/ε

8: v0 ← max{b1,min{b2, v0}}
9: repeat

10: ul+1 ← µ./Kvl

11: vl+1 ← ν./K>ul+1

12: l← l + 1
13: until stopping criterion is met
14: γ ← diag(ul)Kdiag(vl)
15: out γ, 〈c, γ〉

Note that once the training in steps 1 − 4 has completed, steps 5 − 15 can be repeated, i.e. once

a network is trained, it can be used for all future Sinkhorn computations for that dimension and

cost matrix. Furthermore, our algorithm keeps two of the main advantages of the regular Sinkhorn

algorithm that we have discussed in section 4.2: As neural networks can be parallelized in a similar

fashion (i.e. computing outputs for multiple inputs at once via matrix multiplications), algorithm 2

allows for the same parallelization as the Sinkhorn algorithm 1. Also, our outputs are still differentiable

in the inputs, as one can differentiate through the neural network as well.21

In what follows, we will have a closer look at some of the implementation details, such as how training

data is generated or what network architecture is used. The PyTorch implementation can be found

at https://github.com/j-geuter/SinkhornNNHybrid.

5.2 Training Data

As we want the algorithm to be able to generalize to any type of data, we have to make sure that our

training data is rich enough to capture the structure of the entire function p : ∆m−1 ×∆n−1 → Rm,

(µ, ν) 7→ f , and not only train the network on a small subset of ∆m−1×∆n−1. Thus, we cannot train

21To be precise, the maximum and minimum functions in step 8 are only differentiable almost everywhere, but that
suffices in practice. They are implemented using the torch.where function, which also supports differentiation.

https://github.com/j-geuter/SinkhornNNHybrid
https://pytorch.org/docs/stable/generated/torch.where.html?highlight=where#torch.where

5.2 Training Data 47

on a specific dataset like MNIST. Setting each of the m resp. n data points in a training sample to

a random number between 0 and 1 and then normalizing the sample to sum to 1 works in theory,

but does not work particularily well in practice for two reasons: First, one should prevent data points

from being 0 or close to 0. Not only does the Sinkhorn algorithm require the distributions to be

strictly positive everywhere, but also do zeros make the dual potentials more arbitrary: If µi = 0

for some i, then changing fi does not alter the value of 〈f, µ〉. Thus, enforcing all data points to be

larger than some small threshold larger than 0 reduces the degree of freedom the mapping p has for

a given input, and is not restrictive of the problem as the Sinkhorn algorithm only works on strictly

positive data anyways.22 Second, by the law of large numbers (cmp., e.g. [9], theorem 10.10.22), we

know that the average over any patch of the distribution will converge to 1 over the dimension of the

distribution as the size of the patch grows. This means that particularily in larger dimensions, the

mass of the distribution will become ’evenly spread’, which results in the transport distances being

almost identical between all distributions; a property which is not desirable for our training data, as

the network needs distinguishable samples in order to efficiently learn from them. This problem can

be alleviated as follows: Letting r be a random number in [0, 1], instead of setting a datapoint to r we

will set it to rk for some k > 1. This makes the distribution’s mass concentrate on fewer data points.

It ensures that the transport distances between samples are sufficiently large, and the samples differ

more distinctly from one another. See figure 7 for a visualization of the effect of k.

Figure 7: Top: data with k1 = k2 = 0. Bottom: our training data with k1 = 3 and k2 = 0.001.

Another important factor in producing data is the following: As we have seen, the dual value 〈f, µ〉+
〈f c, ν〉 is invariant under adding a constant to f , so we will only use potentials that sum to 0 to ensure

some kind of uniqueness with respect to this constant. Combining these ideas, the data generation

procedure can be seen in algorithm 3.

Importantly, adding k2 should happen after exponentiating by k1 to ensure no data points are too

close to 0 in the end. The dual potential f can be computed using one of the precise algorithms

mentioned in subsection 3.7, for example the network simplex algorithm. In practice, we used the emd

function in the POT package.

Now, we will have a look at how precisely we implemented this idea. We will be dealing with 28× 28-

22As a random number between 0 and 1 is almost surely greater than 0 anyways, and hence a finite number of random
numbers will be larger than a positive threshold, this property holds automatically. However, we found adding a small
constant to all datapoints to slightly improve learning, as this lets us control the threshold. If training on specific datasets
that contain zeros by default – such as MNIST – adding a constant vastly improves learning.

https://pythonot.github.io/

48 5 SINKHORN-NN HYBRID ALGORITHM

Algorithm 3 Training Data Generation

1: in k1 > 1, k2 > 0
2: data ← list()
3: for i = 1, 2, ..., N do
4: µ ∈ [0, 1]m, ν ∈ [0, 1]n random
5: µ← µk1 , ν ← νk1

6: µ← µ+ k2, ν ← ν + k2

7: µ← µ∑
i µi

, ν ← ν∑
i νi

8: f ← DualPotential(µ, ν)

9: f ← f −
∑
i fi
m

10: append(data,(µ, ν, f))
11: end for
12: out data

dimensional distributions only, i.e. 784-dimensional data. However, the algorithm can easily be

transferred to data of different dimension. Empirically, in this case, k1 = 3 and k2 = 0.001 are good

choices, and these are the constants we used for all training data generation.23

The cost matrix used throughout all experiments is the squared Euclidean distance, i.e. the cost to get

from µij (considering µ to be 28×28-dimensional instead of 784-dimensional) to νi′j′ is (i−i′)2+(j−j′)2.

This means the optimal transport costs correspond to the squared Wasserstein-2 distances, cmp.

definition 3.6.1. This is a very common choice,24 but any other cost function could have also been

used.25

5.3 Test Data

As we want to be able to generalize to any dataset, we will test on four different test datasets which

were chosen to be varying in appearance and structure, each containing 10.000 samples. One is

generated in the same way as the training data, one contains drawings of teddy bears from the Quick,

Draw! dataset, one equals the test dataset of MNIST (hand-written digits), and the last one is a black

and white version of the CIFAR10 test dataset (which contains images of boats, cars etc.). For each

of them, 10.000 distributions have been generated, and for each dataset sample two of these have been

chosen at random. For the same reasons as with the training data, all test datasets were modified with

23Note that these values are very specific to the sample size. With 14 × 14-dimensional data, for instance, k1 = 2
proved to be better.

24Another common choice would be the regular Euclidean distance, yielding the Wasserstein-1 distance. As we have
seen in remark 3.6.4, the Wasserstein-1 distance admits a very unique structure in the optimal transport problem, where
the value of the dual only depends on µ−ν and not on both measures separately. This fact is often exploited, e.g. in the
famous Wasserstein GAN paper [3]. However, we neither need nor want to use this property, as our algorithm also works
in more general settings. Yet, we want to mention that in case this cost matrix is used, one could utilize the additional
structure of the problem by feeding µ− ν into the network instead of (µ, ν), resulting in an input size of 784 instead of
1568.

25However, we will see in the following subsection that we make some use of the fact that the Wasserstein distance is
a metric. With a different cost function, we might lose this property; but it is not essential to the algorithm and only
used for fine-tuning the network.

https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

5.4 Network Architecture 49

a constant k2 = 0.001 as in algorithm 3.26 In addition to the two distributions and the dual potential,

the test datasets also contain the transport cost between the two distributions. We again used the emd

function in the POT package for computing the dual potentials and transport costs. We will oftentimes

abbreviate them by ’random’, ’teddies’, ’MNIST’ and ’CIFAR’. Figure 8 shows samples from each of

the test datasets.

Figure 8: Test datasets ’random’, ’teddies’, ’MNIST’ and ’CIFAR’ (from top to bottom).

5.4 Network Architecture

The network is a very simple feed-forward neural network. It is medium-sized, which proved to be

superior over larger, deeper networks as well as over smaller networks. It consists of three layers, the

first with 2 · 784 = 1568 in- and 6 · 784 = 4704 outputs, the second 6 · 784 in- and outputs, and the

last 6 · 784 in- and 784 outputs. This totals roughly 33 million trainable parameters, which results

in training taking approximately 10 minutes per 100.000 samples on a 4 core, 1.6 GHz CPU.27 The

first two layers contain a batch normalization layer (see [22]) and a ReLU activation, whereas the

last layer comes without either. The loss is the mean squared error loss (MSE) on the dual potential

with the Adam optimizer function, see [25], and varying learning rates depending on the experiment.

26Adding this much mass to a 28×28-dimension probability distribution would greatly distort the original distribution,
as it corresponds to adding a total of 0.784 to the distribution, i.e. almost doubling its mass. However, we do not have
to worry about this problem, as the Quick, Draw!, MNIST and CIFAR10 datasets all come with an average mass of
40.000, 100 and 1500 per distribution resp., i.e. they are not normalized yet.

27Note that all training was done on this CPU, as no GPU was available. If shifted to GPU, all training will be a lot
faster than the values reported here.

https://pythonot.github.io/

50 5 SINKHORN-NN HYBRID ALGORITHM

Unless stated otherwise, in experiments with 100, 000 training samples the learning rate will be set

to 0.005, and in experiments with 1 million training samples it will decay from 0.005 to 0.0005. For

comparison, the default learning rate for the Adam optimizer is 0.001. Since we know that our optimal

transport distances are equal to the squared Wasserstein-2 distance which is a metric (cmp. theorem

3.6.7), we know it is symmetric. Symmetry is easy to enforce: Instead of returning net(µ, ν), we

can return net(µ,ν)+net(ν,µ)c

2 , i.e. computing the network’s output for (µ, ν) and then switching the

order of the input distributions. Note that we have to compute the c-transform of net(ν, µ) as if

we switch the distributions’ order, this means instead of maximizing 〈·, µ〉 + 〈·, ν〉 we now maximize

〈·, ν〉+ 〈·, µ〉, and if (f, g) maximizes the former, we have g = f c by theorem 3.5.1 and the maximum

equals 〈f, µ〉 + 〈f c, ν〉, with f appearing in the first scalar product. However, this means (g, f) is

optimal for the latter, again with g = f c, and 〈f c, ν〉 + 〈f, µ〉 is the optimum, with f c appearing

first. Hence, when switching the order of the distributions, we need to consider the c-transform of the

network’s output. In practice, enforcing symmetry during training did not improve performance, but

switching it on after training was over reduced the error on the dual potential by up to 10%.

Furthermore, we know that the network’s output should be a c-concave function. Again, this is easy to

enforce: Instead of returning net(µ, ν), we can return its ’c-concavification’ net(µ, ν)cc instead which

can be thought of as the c-concave approximation of a non-c-concave function, also cmp. proposition

3.3.7. Again, this did not improve performance if turned on during training, but did improve results if

turned on for testing. However, note that we chose to learn f instead of g in algorithm 2 for precisely

this reason: As we need g to initialize v for the Sinkhorn part, we need to compute it via g = f c which

makes it c-concave already, so we get a c-concave result ’for free’.

Note that we can also use this network to approximate the squared Wasserstein-2 distance directly,

without having to feed the outputs to the Sinkhorn algorithm, by computing

W 2
2 (µ, ν) ≈ 〈net(µ, ν), µ〉+ 〈net(µ, ν)c, ν〉.

The MSE on the Wasserstein distance approximation by the network could even be reduced by up

to 50% by each of the two ideas – symmetry and c-concavification – respectively.28 As enforcing

the metric properties of the Wasserstein-2 distance proved successful with respect to its symmetry,

one might wonder if the network’s performance could also somehow benefit from enforcing the other

two metric properties, the triangle inequality and the metric being zero if and only if its inputs are

identical. However, both of these are not easy to enforce, unlike the symmetry. Regarding the latter

of the two, one could attempt to at least add training samples of pairs of identical distributions to the

training data; however, this did not prove to improve performance.

5.5 Why Not...?

By now, there are a few important questions one might be wondering which we have to address, such

as: Why don’t we use the Sinkhorn algorithm in creating data, as this would give us the potential from

28At this point, one might wonder why even include the Sinkhorn part then, and not use the network on its own to
approximate the optimal transport cost. We will investigate this question in section 5.5.

5.5 Why Not...? 51

the regularized problem, which is the actual limit point of the Sinkhorn algorithm? Why don’t we use

the network’s predictions directly to approximate the transport cost, instead of feeding its outputs to

the Sinkhorn algorithm? And why don’t we use a loss on the transport cost approximation computed

from the network’s output? In the following, we will answer these questions.

Why not use the Sinkhorn algorithm in creating training data? We want the network to

compute good starting vectors for the Sinkhorn algorithm. The Sinkhorn algorithm converges to the

potential of the entropic dual problem 4.1.10. So why don’t we use potentials from the entropic prob-

lem in our training data instead? One the one hand, we know by proposition 4.1.13 that the solution

of the unregularized dual problem 3.7.2 approximates the entropic dual. On the other hand, if we did

use the entropic potential in our training data, we would have to fix a regularizing constant ε > 0 for

generating the data. This might increase convergence speed for that particular regularizing constant.

But we want a universal network which can be used with the Sinkhorn algorithm with varying regu-

larizing constants.

One advantage of using the Sinkhorn algorithm would be that the solution of the entropic dual prob-

lem is unique up to a constant – unlike the solution to the unregularized problem. This means that

the mapping which maps a pair of distributions to the dual potential can be turned into a function, if

we ensure uniqueness w.r.t. said constant, which can, e.g., be achieved by only considering potentials

f in the entropic dual problem 4.1.10 which sum to 0. However, while the Sinkhorn algorithm does

converge to the solution in theory, in practice we would have to stop after a finite number of iterations,

losing this uniqueness property.

Why not use the network directly for approximating transport distances? Our network

approximates the dual potential f , and given an optimal f we know by the duality theorem 3.5.1 that

min
γ∈Π(µ,ν)

= 〈f, µ〉+ 〈f c, ν〉.

This means we could approximate the transport distance between µ and ν by calculating 〈net(µ, ν), µ〉+
〈net(µ, ν)c, ν〉. So why do we need to feed net(µ, ν) into the Sinkhorn algorithm in order to approxi-

mate this exact same quantity? First, one nice aspect of the entropic problem is that we can recover

the transport plan from the dual solution (or from the vectors returned by Sinkhorn), cmp. proposi-

tion 4.1.9 and remark 4.1.12. This would not be possible if we used only the network. Second, and

more importantly, the mapping p : (µ, ν) 7→ f is very complex and hard to learn for a neural network.

This means the approximations computed by the network are not very accurate. They work very well

in accelerating the Sinkhorn algorithm, but on their own, they do not approximate the dual potential

to a satisfying degree as can be seen in table 1.

29Network trained for one million training samples, which saturates learning as we will see in section 5.6. Tested on
20 sets with 50 samples each. Note how for very small numbers of iterations, the network without Sinkhorn is actually
superior. For comparison: The respective values for the Sinkhorn algorithm with default initialization for 1, 50, 200,
1000, and 2400 iterations are 5.322± 0.083, 3.098± 0.079, 2.098± 0.079, 0.744± 0.043, and 0.145± 0.008, showing that
the improved approximations compared to the network by itself are not due to the Sinkhorn algorithm alone, but also
stem from the initialization. However, we will have a closer look at this in the following section 6.

52 5 SINKHORN-NN HYBRID ALGORITHM

Sinkhorn with network initialization
network 1 iteration 50 iterations 200 iterations 1000 iterations 2400 iterations

1.706± 0.021 3.654± 0.087 2.038± 0.083 1.338± 0.075 0.425± 0.036 0.079± 0.007

Table 1: L1 errors on Wasserstein distance with 95% confidence intervals on ’random’ test data for
the network itself, compared to network+fixed number of Sinkhorn iterations.29

Why not use a loss on the transport distance? For a sample (µ, ν, f) from the training data, the

loss we use is loss(µ, ν) = MSE(net(µ, ν), f). However, since we know that the expression 〈·, µ〉+ 〈·, ν〉
is maximized on optimal potentials, and at optimality the second potential is the c-transform of the

first (cmp. theorem 3.5.1), we could also use

loss(µ, ν) = − (〈net(µ, ν), µ〉+ 〈net(µ, ν)c, ν〉) (22)

as a loss. This is in fact the loss used by Amos et al. [2]. It has a distinct advantage over our choice:

It does not require ground truth optimal potentials f in the training data. This means we do not have

to solve optimal transport problems for generating training data. However, as can be seen in figure 9,

this leads to significantly worse approximations on the potential than our approach.

Figure 9: Training with an MSE loss on the potential (’pot’) vs. on the negative Wasserstein distance
approximation (’WS’). Average over 10 network instances alongside 95% confidence intervals of the
mean.30

5.5 Why Not...? 53

This might be the reason that no universal network is presented in [2], but only one trained on a

specific dataset like MNIST. In order to learn a universal network, a loss on the potential is to be

preferred. This means that training data generation takes more time, but for a given distribution size,

training data needs to be created just once; afterwards, it can be used for various networks.

Why not train on MNIST? The network in [2] was trained on MNIST data. So why don’t we?

By now, the answer to this question should be clear. Such a network just won’t generalize to other

datasets, as can be seen in figure 10.

Figure 10: Training on our training data (’random’) vs. training on MNIST training data (’MNIST’).
Average over 10 samples alongside 95% confidence intervals of the mean.31

As expected, the MNIST trained network performs better on the MNIST test dataset, but worse

on all other datasets. Interestingly, for the other three datasets, one can notice however that the

error for the MNIST trained network became smaller at first – in the ’teddies’ case significantly so

– before exploding. This shows that the MNIST dataset does contain some useful information for

generalization (although limited), but the network quickly starts to overfit on this specific dataset.

30The confidence intervals are shown as shaded areas around the mean. For the ’pot’ plots they are very narrow, that
is why they are almost not visible. As can be seen from the plots, the confidence intervals for the loss as in equation (22)
on the other hand are very wide. This can be explained by a huge discrepancy in performance between the 10 instances,
some learning almost as well as with the ’pot’ loss, others learning almost nothing at all. Apparently, using this loss
sometimes gets the network stuck in very bad local minima.

31The MNIST training data has been generated with a constant k2 = 0.001 as in algorithm 3. For every sample, two
distributions from the 60.000 available training instances have been chosen at random.

54 5 SINKHORN-NN HYBRID ALGORITHM

5.6 Training

As can be seen from the confidence intervals in figure 9, different network instances learn at the almost

exact same rate when using an error on the dual potential. Hence, for our experiments, we will only

consider a single network (as opposed to computing the mean values over multiple networks). Training

saturates at around one million training samples, as can be seen in figure 11, with average MSEs on

the four test datasets being 11.8, 53.3, 160.7 and 13.4 (for ’random’, ’teddies’, ’MNIST’ and ’CIFAR’

respectively), whereas the reported errors without training were 608, 1059, 551 and 2275. In figure 11,

the training progress over three million training samples can be seen. The learning rate used decayed

from 0.005 to 0.0002.

Figure 11: Training a network with lr = 0.005 to lr = 0.0002 on three million samples.

As can be seen from the plot, most of the learning happens during the first 100, 000 samples. In our

experiments, we will be using a network trained on one million unique samples, i.e. we only learned for

one epoch on the data, as more epochs would not increase performance as can be seen from figure 11.

We use a learning rate decaying from 0.005 to 0.0005 and a batch size of 100. Training the network

on one million samples takes approximately 100 minutes on a 4 core, 1.6 GHz CPU.

55

6 Results

In this section, we will see how our Sinkhorn-NN hybrid algorithm performes compared to the Sinkhorn

algorithm with its default initialization (i.e. 128 ∈ R28). We used a network trained as outlined in

section 5.6. The constants b1 and b2 from algorithm 2 were set to 1e-35 and 1e35 respectively; they

can be chosen to be extremely small resp. extremely large, hence they do not significantly alter the

initialization vector. The regularizer used in all experiments was ε = 0.2.32

6.1 Error w.r.t. Iterations

When it comes to measuring the accuracy of the Sinkhorn algorithm for a specific initialization,

there are two errors we will consider: The first is the L1 error on the Wasserstein distance,33 i.e.

if (T li)i ∈ RN are the transport costs computed from the Sinkhorn algorithm after l iterations for

some N -dimensional batch of test data and (T true
i)i ∈ RN are the ground truth costs, we compute

L1(T l, T true). Now when using the Sinkhorn algorithm in practice, the ground truth costs are not

available, and a common practice is to consider the marginal constraint violations instead, which are

a measure for how close the solution from the algorithm is to an actual transport plan. This is the

second error we will be considering. There are different possibilities to measure the marginal constraint

violation; in figure 5, for example, we considered log
(∥∥1>n γ

(l) − ν>
∥∥

1

)
with γ(l) being the transport

plan after l Sinkhorn iterations.

In what follows, we will instead consider(∥∥1>mγ
(l) − ν>

∥∥
1

)
+
(∥∥γ(l)1n − µ

∥∥
1

)
2

,

which also accounts for the marginal constraint violation on µ. In figure 12, we can see the average L1

error on the Wasserstein distance for 400 to 2400 Sinkhorn iterations. Figure 13 shows the marginal

constraint violations for 400 to 2400 Sinkhorn iterations. In table 2, we report the values for 1, 200,

1000 and 2400 iterations. In each of them, the average over 20 test sets with 50 samples each (i.e. the

solution for 50 samples was computed in a parallelized fashion as outlined in section 4.2), alongside

the 95% confidence interval of the mean, are reported.

As one can see from the table, the Sinkhorn-NN algorithm reduces the error on the Wasserstein distance

and the marginal constraint violation for a given number of iterations by up to 50%, depending on

32ε = 0.2 is empirically a good choice. In some instances, for smaller regularizing constants the errors even became
larger. Also, the smaller ε gets, the larger the number of test samples returning NaN due to numerical inaccuracies in
the Sinkhorn algorithm. In the experiments in this section, for the CIFAR dataset up to 24% of samples in the test sets
resulted in NaN, in which case the average was computed over the remaining ≥ 76% of samples. For all other test sets,
no samples resulted in NaN.

33We will refer to the transport distances computed as Wasserstein distances, although, to be precise, they are the
squared Wasserstein-2 distances as discussed in section 5.2.

56 6 RESULTS

Figure 12: L1 error on the Wasserstein distance w.r.t. number of Sinkhorn iterations.

the dataset.

In practice, one often uses a threshold on the marginal constraint violation as a stopping criterion. In

table 3, we report the average number of iterations needed to achieve a marginal constraint violation

of 1e-3, averaged over 100 individual samples, alongside a 95% confidence interval. The number of

iterations needed was measured with an accuracy of 20 iterations (hence, the true values might be

up to 20 iterations lower). Table 4 shows the the average number of iterations needed for a marginal

constraint violation of 1e-2.

As one can see from the tables, for various marginal constraint violation thresholds the Sinkhorn-

NN hybrid algorithm is consistently outperforming the regular Sinkhorn algorithm. However, the

difference becomes more significant for larger thresholds, with an average 33.6% less iterations needed

for a 1e-2 threshold, compared to an average 17.5% less iterations needed for a 1e-3 threshold.

6.2 Speed

One important aspect is how our algorithm compares against the default Sinkhorn algorithm in terms

of time needed for computations. Ultimately, the goal is to compute approximations as quickly as

possible. Hence, more important than comparing the errors w.r.t. the number of iterations is com-

6.2 Speed 57

Figure 13: Marginal constraint violation w.r.t. number of Sinkhorn iterations.

paring it with respect to time. Figure 14 shows the time in seconds it took for each of the test subsets

(consisting of 50 samples each) from section 6.1 to be computed. The values are averaged over all

test subsets and over all four test datasets and presented alongside the 95% confidence intervals of the

average.

As one can see from the plot, the Sinkhorn-NN algorithm takes more time for the same number of

iterations, as passing the distributions through the network takes additional time, but the difference is

negligible. Hence, comparing the two errors – L1 on the Wasserstein distance and marginal constraint

violation – against the time the algorithm took for computations looks very similar to the plots w.r.t.

the number of iterations from section 6.1, as can be seen in figures 15 and 16.

Both of them show the respective errors, as usual over 20 test sets with 50 samples each, and the 95%

confidence intervals w.r.t. the mean. The time values used were the averages over the 20 test sets. As

one can see, the plots are a little more wiggly than the ones w.r.t. the number of iterations, which can

probably be explained by time not being as accuractely measurable in an objective fashion, as other

computer processes in the background might interfere. However, one can still see that the Sinkhorn-

NN algorithm achieves errors up to twice as small in the same time as the Sinkhorn algorithm with

its default initialization.

58 6 RESULTS

Iterations random teddies

default net default net

WS 1 5.322± 0.083 3.654± 0.087 9.856± 0.369 7.177± 0.383
200 2.098± 0.079 1.338± 0.075 2.756± 0.163 1.848± 0.136
1000 0.744± 0.043 0.425± 0.036 0.593± 0.047 0.357± 0.035
2400 0.145± 0.008 0.079± 0.007 0.052± 0.006 0.031± 0.004

marg 1 .5869± .0014 .5499± .0014 .5548± .0047 .4790± .0036
200 .0528± .0009 .0271± .0008 .0611± .0020 .0350± .0015
1000 .0149± .0004 .0075± .0005 .0113± .0006 .0064± .0004
2400 .0028± .0001 .0015± .0001 .0011± .0001 .0006± .0001

MNIST CIFAR

default net default net
WS 1 10.915± 0.397 6.310± 0.372 10.011± 0.444 8.585± 0.443

200 0.836± 0.039 0.387± 0.027 7.510± 0.397 6.377± 0.375
1000 0.063± 0.007 0.031± 0.004 2.450± 0.118 1.903± 0.108
2400 0.008± 0.001 0.007± 0.001 0.388± 0.024 0.284± 0.019

marg 1 .6242± .0078 .4888± .0057 .2427± .0043 .2412± .0029
200 .0323± .0009 .0171± .0005 .0957± .0026 .0673± .0025
1000 .0030± .0002 .0016± .0001 .0268± .0006 .0190± .0006
2400 .0002± .0000 .0001± .0000 .0042± .0001 .0029± .0001

Table 2: L1 error on Wasserstein distance (’WS’) and marginal constraint violation (’marg’) for 1, 200,
1000 and 2500 Sinkhorn iterations; Sinkhorn-NN hybrid (’net’) vs. default initialization (’default’).

random teddies MNIST CIFAR

default 3230± 133 2284± 115 1310± 82 3244± 194
net 2520± 159 1849± 127 1093± 73 2842± 199

Table 3: Average number of iterations needed to achieve a 1e-3 marginal constraint violation.

random teddies MNIST CIFAR

default 1291± 84 1025± 70 490± 37 1569± 123
net 721± 96 686± 71 318± 31 1224± 133

Table 4: Average number of iterations needed to achieve a 1e-2 marginal constraint violation.

6.2 Speed 59

Figure 14: Time in seconds w.r.t. number of Sinkhorn iterations.

Figure 15: L1 error on the Wasserstein distance w.r.t. time.

60 6 RESULTS

Figure 16: Marginal constraint violation w.r.t. time.

61

7 Discussion

In this thesis, we explained what the Sinkhorn algorithm is and how and why it works, thoroughly

going through the mathematical foundations in chapters 3 and 4, starting with the very basics of

optimal transport.

We had a look at how the algorithm is usually initialized, and argued why this initialization might

not be advantageous. We then proposed our Sinkhorn-NN hybrid algorithm, which features a neural

network that learns to predict a potential from the optimal transport dual problem given two distribu-

tions, and showed how this network can be used to compute initializations for the Sinkhorn algorithm

in chapter 5. We explained how we produce our training data in such a way that it allows for faster

learning while still being able to generalize to any data. As can be seen in section 5.5, our loss leads

to significantly better approximations of the dual potential than a loss on the Wasserstein distance.

Chapter 6 features results from various experiments with the Sinkhorn-NN hybrid algorithm. In sec-

tion 6.1, we can see that, given a fixed number of iterations for the Sinkhorn algorithm, our hybrid

algorithm reduces the error – measured both in terms of the L1 error on the Wasserstein distance as

well as in terms of the marginal constraint violation – by roughly 20% on the CIFAR test dataset and

by roughly 40 − 50% on the other test datasets. For achieving a specific threshold on the marginal

constraint violation, Sinkhorn-NN consistently outperforms the regular Sinkhorn algorithm; however,

the difference grows as the threshold becomes larger. For a 1e-2 threshold, Sinkhorn-NN needs an

average 33.6% less iterations, averaged over all four test datasets, whereas for a 1e-3 threshold, this

difference shrinks to 17.5%. This can be explained by that fact that a good initialization is particu-

larily useful for smaller numbers of iterations, as in this scenario, the default initialization might still

be completely off the actual solution. The network also needs time to compute the initialization for

the Sinkhorn algorithm, a factor that needs to be taken into account when measuring performance.

Hence, in section 6.2, we considered the errors with respect to time needed for computations. The

relationship is very similar to the errors with respect to the number of iterations, and we can see that

our algorithm achieves errors of up to 50% less, depending on the test dataset and the computation

time. This can be explained by our algorithm needing insignificantly more time than the regular

Sinkhorn algorithm for the same number of iterations, which is also shown in this section.

These results show that initializing the Sinkhorn algorithm with a vector learned by a neural network

can significantly improve its convergence and accuracy. Once such a network is learned, it can be used

for all calls of the Sinkhorn algorithm for that particular dimension and cost function.

Further research could include using this approach in much higher dimensions, combining the network

with other algorithms such as the Sinkhorn algorithm in the log domain (see [33], chapter 4.4) which

also iteratively approximate the dual potentials and need to be initialized with a starting vector, or

even using it in the continuous optimal transport scenario, for example with Wasserstein GANs (see,

e.g., [3] and [2]). We also noticed that the way in which training data is generated has a huge impact on

the performance; e.g. simply altering the constant k1 in algorithm 3 made a big difference. However,

entirely different ways of generating training data are conceivable, and future research could include

coming up with a more sophisticated approach.

62 A APPENDIX

A Appendix

In this section we recall some definitions and properties that are used throughout the thesis, in

particular in chapter 3 on optimal transport. For measure theoretic definitions not provided here, one

might resort to introductions to measure theory such as the one in [17]. A great overview of optimal

transport in the general setting can be found in [41], and an introduction to discrete optimal transport

in [33].

Definition A.1 (σ-Algebra). Let Ω be a non-empty set. A subset A ⊂ 2Ω of the power set of Ω is

called a σ-algebra if it satifies the following properties:

1. Ω ∈ A

2. If A ∈ A, then also Ω \A ∈ A

3. If (Ai)i∈N ⊂ A, then also ⋃
i∈N

Ai ∈ A

Definition A.2 (Borel σ-Algebra). Let (T ,O) be a topological space. Then the σ-algebra generated

by O is called the Borel σ-algebra on T .34

Definition A.3 (Measurable Space, Measure, Finite Measure, Discrete Measure, Signed Measure).

A measurable space is a pair (X ,A) of a non-empty set X and a σ-algebra A on X . Let (X ,A) be a

measurable space. A measure on (X ,A) is a map µ : A → [0,∞] such that µ(∅) = 0 and

µ

(∞⋃
i=0

Ai

)
=

∞∑
i=0

µ(Ai)

for every countable collection (Ai)i∈N ⊂ A of pairwise disjoint sets in A. The triple (X ,A, µ) is called

a measure space.

The measure is called finite if µ(X) <∞. It is called discrete if it is concentrated on a countable set,

i.e. there exist (xi)i∈N such that µ(X \ (∪i∈N{xi})) = 0.

A signed measure on (X ,A) is a map ν : A → [−∞,∞] such that ν(∅) = 0, ν takes at most one of

the two values −∞ and ∞ on all of A, and

ν

(∞⋃
i=0

Ai

)
=

∞∑
i=0

ν(Ai)

for every countable collection (Ai)i∈N ⊂ A of pairwise disjoint sets in A.

Definition A.4 (Mutually Singular Measures). Let µ and ν be two measures on a measurable space

(X ,A). The measures µ and ν are called mutually singular, written µ ⊥ ν, if there exist two disjoint

34This means that it is defined as the intersection over all σ-algebras containing all sets O ∈ O, which can be shown
to again be a σ-algebra.

63

sets Xµ and Xν such that X = Xµ ∪ Xν and for every A ∈ A we have

µ(A) = µ(A ∩ Xµ), ν(A) = ν(A ∩ Xν).

Theorem A.5 (Jordan Decomposition). Let (X ,A) be a measurable space and µ a signed measure

on (X ,A). Then there exists a unique pair (µ+, µ−) of mutually singular measures on (X ,A), one of

which is finite, such that µ = µ+ − µ−.

Proof. A proof can e.g. be found in [16], theorem 2.

Definition A.6 (Upper Variation, Lower Variation, Total Variation). Let µ be a signed measure on a

measurable space (X ,A) and (µ+, µ−) its Jordan decomposition. Then µ+ is called the upper variation

of µ, µ− its lower variation and ‖µ‖ := µ+ + µ− its total variation.

Definition A.7 (Product σ-Algebra). Given two measurable spaces (X ,A) and (Y,B), the product

σ-algebra of A and B is the σ-algebra generated by all sets of the form A×B for A ∈ A and B ∈ B.

It is denoted by A⊗ B.

Definition A.8 (σ-Finite). A measure space (X ,A, µ) is called σ-finite if there exist sets (Xi)i∈N ⊂ A
such that

µ(Xi) <∞ for all i ∈ N and X =
⋃
i∈N

Xi.

Proposition A.9 (Product Measure). Let (X ,A, µ) and (Y,B, ν) be two σ-finite measure spaces.

Then there exists a unique measure on A⊗B, called the product measure of µ and ν and denoted by

µ⊗ ν, such that

µ⊗ ν(A×B) = µ(A)ν(B) for all A ∈ A, B ∈ B.

Proof. The proof of this well-known fact can e.g. be found in [28], chapter 8.2, theorem A.

Definition A.10 (Product Topology). Let (X , TX) and (Y, TY) be topological spaces. Then the prod-

uct topology on X × Y is the topology generated by sets of the form π−1
X (X) for X ∈ TX and π−1

Y (Y)

for Y ∈ TY , i.e. the coarsest topology such that πX and πY are continuous. We denote it by TX×Y .

Remark A.11 (Properties of Polish Spaces). In the thesis, we will often face product spaces of two

spaces, say X and Y. As one can see from the definitions above, if both of these are equipped with

their Borel σ-algebras B(X) and B(Y), there are really two logical choices for what σ-algebra we could

consider on the product space: We could either take the product σ-algebra B(X)⊗B(Y), or the Borel

σ-algebra on the product space (X × Y, TX×Y). In general, these two σ-algebras do not coincide.

However, if both X and Y are Polish spaces, the two σ-algebras on the product space turn out to

indeed be the same.35 This means we do not have to worry about which σ-algebra to choose.

Also note that the product of two Polish spaces, equipped with the product topology, will again be a

Polish space.36

35A proof of this result can e.g. be found in [23], lemma 1.2. Note that completeness of the spaces is not even needed.
36Here we make a slight abuse of notation, as our definition of a Polish space in section 2 was that it is a complete, sep-

arable, metric space; however, in this case, the product space is metrizable. This means we can find a metric that induces
the product topology. Choose, e.g., dX×Y := max(dX , dY), i.e. dX×Y((x1, y1), (x2, y2)) = max(dX (x1, x2), dY(y1, y2)).
Then it is straightforward to show that this is indeed a metric on the product space that induces the product topology,
and that X × Y equipped with this metric is a Polish space.

64 A APPENDIX

Lemma A.12. Let (X , d) be a metric space and x, y ∈ X . Then for any z ∈ X there holds

d(x, y)p ≤ 2p(d(x, z)p + d(z, y)p).

Proof. We have

d(x, y)p ≤ (d(x, z) + d(z, y))p =

p∑
k=0

(
p

k

)
d(x, z)p−kd(z, y)k.

Now in the case d(x, z) ≤ d(z, y) this gives us

d(x, y)p ≤
p∑

k=0

(
p

k

)
d(z, y)p = 2pd(z, y)p,

whereas in the case d(x, z) ≥ d(z, y) we get

d(x, y)p ≤
p∑

k=0

(
p

k

)
d(x, z)p = 2pd(x, z)p.

Combining these two inequalities yields the claim.

Lemma A.13. Let (X , d) be a metric space. Then the following are equivalent:

(i) X is compact

(ii) X is sequentially compact, i.e. any sequence in X contains a convergent subsequence

(iii) X is complete and totally bounded

Proof. (i)⇒ (ii) :

Let (xi)i∈N be a sequence in X . Assume for the sake of contradiction that it does not contain a

convergent subsequence. This means it does not contain a cluster point, hence for any x ∈ X we can

find an open neighbourhood Ux of x such that {i ∈ N : xi ∈ Ux} is finite. This means {Ux : x ∈ X}
is an open cover of X , and by compactness we can find a finite subcover. However, this finite subcover

can only contain a finite number of points xi, which is a contradiction.

(ii)⇒ (iii) :

Completeness follows immediately, as every Cauchy sequence contains a convergent subsequence by

assumption. Now assume for the sake of contradiction X was not totally bounded, i.e. there exists

some ε > 0 such that X cannot be covered by finitely many balls of radius ε. Let Bε(x0) be an

arbitrary ball of that radius for some x0 ∈ X . For i ∈ N>0, let xi ∈ X \ (∪i−1
j=0Bε(xj)). Then (xi)i∈N

is a sequence in X with the property that d(xi, xj) ≥ ε whenever i 6= j. This means it cannot contain

a convergent subsequence, which is a contradiction.

(iii)⇒ (i) :

Assume for the sake of contradiction it was not, i.e. there exists an open cover (Ui)i∈I of X without a

finite subcover. As X is totally bounded, we can cover it by finitely many sets C1
1 , ..., C

1
p1

of diameter

less than 1, and by assumption one of these sets, call it C1, cannot be covered by finitely many Ui. Now

65

C1 can be covered by finitely many sets C2
1 , ..., C

2
p2

of radius less than 1
2 (without loss of generality

let C2
i ⊂ C1 for all i ∈ Jp2K), and again one of them, C2, cannot be covered by finitely many Ui.

Proceeding like this, we find a sequence C1 ⊃ C2 ⊃ C3 ⊃ ... of sets Ci with diameters less than 1
i ,

and each of them cannot be covered by finitely many Ui. Let xi ∈ Ci be an arbitrary point for each

i ∈ N>0. Then (xi)i∈N>0 is a Cauchy sequence by construction, hence it converges to some x ∈ X by

completeness. As (Ui)i is a covering of X , we can find i ∈ I such that x ∈ Ui. Let δ > 0 such that

Bδ(x) ⊂ Ui. Let N ∈ N such that d(x, xN) < δ
2 and 1

N < δ
2 . Then

CN ⊂ B 1
N

(xN) ⊂ B δ
2
(xN) ⊂ Bδ(x) ⊂ Ui,

which contradicts the fact that CN cannot be covered by finitely many Ui.

Lemma A.14. Let (X , d) be a complete, metric space and K ⊂ X be a closed subset. Then K is

compact if and only if it is totally bounded.

Proof. As K is closed, the restriction of (X , d) to K is still a complete, metric space. Now the

statement follows immediately from lemma A.13.

Theorem A.15 (Weierstraß). Let (X , d) be a metric space, K ⊂ X compact, and I : X → [−∞,∞] a

lower semicontinuous function. Then I attains its minimum on K, meaning there exists some x0 ∈ K
such that

I(x0) = min
x∈K

I(x).

Proof. This follows directly from Theorem 3.6 in [17], as the statement there is a generalization of our

proposition to topological spaces.

Theorem A.16 (Prokhorov). Let X be a Polish space. Then a set P ⊂ P (X) is precompact for the

weak topology, meaning its closure w.r.t. the weak topology is compact, if and only if it is tight.

Proof. This can be found as Theorem 8.6.2 in [9].

Theorem A.17 (Disintegration). Let X and Y be two Polish spaces and µ ∈ P (X). Let π : X → Y
be a Borel map and ν := µ ◦ π−1. Then there exists a ν-almost everywhere uniquely defined family

(µy)y∈Y ⊂ P (X) of Borel measures on X such that

µy
(
X \ π−1(y)

)
= 0 for ν-almost every y ∈ Y,

and for any Borel map f : X → [0,∞] there holds∫
X
f(x) dµ(x) =

∫
Y

∫
π−1(y)

f(x) dµy(x) dν(y).

Proof. A proof to this theorem can be found in [13], Chapter III, theorem 70 on page 78. It holds

true in the even more general setting of Radon spaces.

Theorem A.18 (Monotone Convergence). Let (X ,A, µ) be a measure space and (fn)n∈N : X → [c,∞]

be an increasing sequence of measurable functions, where c ∈ R. Then the pointwise supremum of these

66 A APPENDIX

functions, f := supn∈N fn, is measurable and

lim
n→∞

∫
X
fn(x) dµ(x) =

∫
X
f(x) dµ(x).

Proof. A proof can e.g. be found in [8], Theorem 2.8.2.

Lemma A.19 (Uniqueness of Measures integrated over Cb(X)). Let (X , d) be a metric space and

µ and ν be two finite Borel measures on X . Then µ = ν if and only if
∫
X ϕdµ =

∫
X ϕdν for all

ϕ ∈ Cb(X).

Proof. If µ = ν, then
∫
X ϕdµ =

∫
X ϕdν for all ϕ ∈ Cb(X) is clear. Now let

∫
X ϕdµ =

∫
X ϕdν

hold for all ϕ ∈ Cb(X). Let A ∈ B(X) be closed and for ε > 0 define fε : X → [0, 1], fε(x) =

max{1− 1
εd(x,A), 0} (where d(x,A) := infy∈A d(x, y)). Then fε ∈ Cb(X) and fε converges pointwise

to 1A from above as ε→ 0. Hence, by proposition A.18, µ(A) = ν(A).

Proposition A.20 (Minkowski Inequality). Let (X ,A, µ) be a measure space and p ∈ [1,∞). Let

f, g ∈ Lp(µ). Then f + g ∈ Lp(µ) and

(∫
X
|f + g|p dµ

) 1
p

≤
(∫
X
|f |p dµ

) 1
p

+

(∫
X
|g|p dµ

) 1
p

.

Proof. A proof of this famous inequality can e.g. be found in [8], theorem 2.11.9.

Proposition A.21 (Lagrange Multipliers). Let f : Rn → R and hi : Rn → R for i ∈ JmK be

continuously differentiable. Consider the minimization problem

min
x
f(x)

s.t. hi(x) = 0 for all i ∈ JmK.

Let x? be a local minimum of this problem, such that all ∇hi(x?) for i ∈ S ⊂ JmK are linearly

independent. Then there exists a unique vector λ ∈ R|S|, where |S| denotes the number of elements in

S, called the Lagrange multiplier, such that

∇f(x?) +
∑
i∈S

λi∇hi(x?) = 0.

Proof. This very well-known statement from calculus is e.g. proven in [19], theorem 1.13.

REFERENCES 67

References

[1] L. Ambrosio, N. Gigli. A user’s guide to optimal transport. Modelling and Optimisation of Flows

on Networks, pages 1–155, Springer, 2013.

[2] B. Amos, S. Cohen, G. Luise, I. Redko. Meta Optimal Transport. arXiv:2206.05262v1 [cs.LG],

2022.

[3] M. Arjovsky, S. Chintala, L. Bottou. Wasserstein GAN. arXiv:1701.07875 [stat.ML], 2017.

[4] M. Bacharach. Estimating nonnegative matrices from marginal data. International Economic Re-

view, 6(3):294–310, 1965.

[5] D. P. Bertsekas. Nonlinear Programming. 2nd edition, Athena Scientific, Belmont, Massachusetts,

1999.

[6] D. P. Bertsekas. A new algorithm for the assignment problem. Mathematical Programming,

21(1):152–171, 1981.

[7] D. Bertsimas, J. Tsitsiklis. Introduction to Linear Programming. Athena Scientific and Dynamic

Ideas, Belmont, Massachusetts, 1997.

[8] V. Bogachev. Measure Theory Volume I. Springer, Berlin, 2007.

[9] V. Bogachev. Measure Theory Volume II. Springer, Berlin, 2007.

[10] N. Courty, R. Flamary, A. Habrard, A. Rakotomamonjy. Joint distribution optimal transportation

for domain adaptation. Advances in Neural Information Processing Systems, 30, 2017.

[11] M. Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. Advances in Neural

Information Processing Systems 26, pages 2292–2300, 2013.

[12] R. Dadashi, L. Hussenot, M. Geist, O. Pietquin. Primal Wasserstein Imitation Learning.

arXiv:2006.04678 [cs.LG], 2020.

[13] C. Dellacherie, P.-A. Meyer. Probabilities and Potential. Hermann, Paris, 1978.

[14] E. Deming, F. F. Stephan. On a least squares adjustment of a sampled frequency table when the

expected marginal totals are known. Annals of Mathematical Statistics, 11(4):427–444, 1940.

[15] S. Erlander. Optimal Spatial Interaction and the Gravity Model, volume 173. Springer-Verlag,

1980.

[16] T. Fischer. Existence, uniqueness, and minimality of the Jordan measure decomposition.

arXiv:1206.5449 [math.ST], 2012.

[17] I. Fonseca, G. Leoni. Modern Methods in the Calculus of Variations: Lp Spaces. Springer, New

York, 2007.

https://arxiv.org/abs/2206.05262v1
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/2006.04678
https://arxiv.org/abs/1206.5449

68 REFERENCES

[18] J. Franklin, J. Lorenz. On the scaling of multidimensional matrices. Linear Algebra and its Ap-

plications, 114:717–735, 1989.

[19] A. Fuente. Mathematical Methods and Models for Economists. Cambridge University Press, Cam-

bridge, 2000.

[20] A. Galichon, B. Salanié. Matching with trade-offs: revealed preferences over competing character-

istics. Technical report, Preprint SSRN-1487307, 2009.

[21] A. Galichon. Optimal transport methods in economics. Optimal Transport Methods in Economics,

Princeton University Press, 2016.

[22] S. Ioffe, C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing In-

ternal Covariate Shift. arXiv:1502.03167 [cs.LG], 2015.

[23] O. Kallenberg. Foundations of Modern Probability. 2nd edition, Springer, New York, 2002.

[24] L. V. Kantorovich. On the Translocation of Masses. Dokl. Akad. Nauk SSSR, 37, No. 7–8, 227–229,

1942, available here in an English translation (last visited 10/12/2022).

[25] D. P. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs.LG],

2017.

[26] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, G. K. Rohde. Optimal mass transport: Signal

processing and machine-learning applications. IEEE signal processing magazine, 34(4):43–59, 2017.

[27] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics Quar-

terly, 2:83–97, 1955.

[28] M. Loève. Probability Theory I. 4th edition, Springer, 1977.

[29] G. Monge. Mémoire sur la théorie des déblais et des remblais. Royale Sci. Paris, 3, 1781.

[30] L. Nenna. Lecture 2: Entropic Optimal Transport. Available online: https://lucanenna.

github.io/teaching/optimaltransport/lecture2.pdf, 2022. Last visited 10/11/22.

[31] J. B. Orlin. A polynomial time primal network simplex algorithm for minimum cost flows. Math-

ematical Programming, 78(2):109–129, 1997.

[32] K. R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press Inc., 1967.

[33] G. Peyré, M. Cuturi. Computational Optimal Transport. Foundations and Trends in Machine

Learning, vol. 11, number 5-6, 355–607, 2019.

[34] A. Pratelli. On the equality between Monge’s infimum and Kantorovich’s minimum in optimal

mass transportation. Elsevier Masson SAS, 2006.

[35] F. Santambrogio. Optimal transport for applied mathematicians. Birkhäuser, 2015.

[36] G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, V. Subramanian, A. Solomon, J. Gould, S. Liu,

S. Lin, P. Berube, et al. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies

Developmental Trajectories in Reprogramming. Cell, 176(4), 2019.

https://arxiv.org/abs/1502.03167
https://web.eecs.umich.edu/~pettie/matching/Kantorovitch-translocation-of-masses-1942.pdf
https://arxiv.org/abs/1412.6980
https://lucanenna.github.io/teaching/optimaltransport/lecture2.pdf
https://lucanenna.github.io/teaching/optimaltransport/lecture2.pdf

REFERENCES 69

[37] M. A. Schmitz, M. Heitz, N. Bonneel, F. Ngole, D. Coeurjolly, M. Cuturi, G. Peyré, J.-L. Starck.

Wasserstein dictionary learning: Optimal transport-based unsupervised nonlinear dictionary learn-

ing. SIAM Journal on Imaging Sciences, 11(1):643–678, 2018.

[38] R. Sinkhorn, P. Knopp. Concerning nonnegative Matrices and doubly stochastic Matrices. Pacific

Journal of Mathematics, Vol. 21, No. 2, 1967.

[39] R. E. Tarjan. Dynamic trees as search trees via euler tours, applied to the network simplex algo-

rithm. Mathematical Programming, 78(2):169–177, 1997.

[40] J. Thornton, M. Cuturi. Rethinking Initialization of the Sinkhorn Algorithm. arXiv:2206.07630v1

[stat.ML], 2022.

[41] C. Villani. Optimal Transport Old and New. Springer, Berlin Heidelberg, 2009.

[42] A. G. Wilson. The use of entropy maximizing models, in the theory of trip distribution, mode split

and route split. Journal of Transport Economics and Policy, pages 108–126, 1969.

[43] G. U. Yule. On the methods of measuring association between two attributes. Journal of the Royal

Statistical Society, 75(6):579–652, 1912.

https://arxiv.org/abs/2206.07630v1

Index

(Pp(X),Wp), 30

1-Lipschitz, 19

Br(x), 9

C(X), 9

Cb(X), 9, 66

H, 35

L1, 10

P (X), 9

Sn, 8

W1, 29

Wp, 28

Π(µ, ν), 12

δx, 9

〈·, ·〉, 8

Jm,nK, 8

JnK, 8

A⊗ B, 63

L(X), 10

L(X,Y), 10

Pp(X), 28

TX×Y , 63

µ⊗ ν, 63

µ+, 63

µ−, 63

∂cψ, 20

∂cψ(x), 20

πX , 9

ψc, 18

σ-algebra, 62

σ-finite, 63

Id, 9

vec(A), 8

ϕc, 18

c-concavity, 19, 45, 50

c-convexity, 20

c-cyclical monotonicity, 22

c-subdifferential, 20

c-superdifferential, 20

c-transform, 18, 45, 50, 52

Adam optimizer, 49

algorithm

auction, 34

Hungarian, 34

network simplex, 34

simplex, 34

Sinkhorn, 34, 41, 45, 55, 61

convergence, 42

initialization, 43, 45

parallelization, 43

Sinkhorn-NN hybrid, 45, 55, 61

batch normalization, 49

batch size, 54

Borel σ-algebra, 62

Borel σ-algebra on product space, 63

CIFAR10, 48, 49, 52–58, 60, 61

competitiveness, 18

cost matrix, 48

coupling, 11

deterministic, 12

trivial, 12, 35

domain adaptation, 6

duality

entropic optimal transport, 39

optimal transport, 27

Earth Mover’s distance, 28

entropy, 35

epoch, 54

Frobenius dot-product, 8

function

strongly convex, 36

Gibbs kernel, 37

gluing lemma, 29

70

INDEX 71

imaging, 6

imitation learning, 6

Jordan decomposition, 63

Kantorovich, 6

dual problem, 17

problem, 13, 32

Kantorovich-Rubinstein distance, 28

Kronecker product, 8

Lagrange multiplier, 37, 38, 66

Lagrangian, 38

law, 10

learning rate, 10, 49, 54

linear program

dual, 33

optimal solution, 33

primal, 33

lower semicontinuity, 9

of the cost functional, 15

lr, 10, 54

marginal, 11

constraint violation, 41, 55, 58, 60, 61

measurable space, 62

measure, 62

Borel, 9

concentrated, 9

Dirac, 9

discrete, 62

finite, 9, 62

mutually singular, 62

product, 63

pushforward, 10

signed, 23, 62

support, 9

measure space, 62

Minkowski inequality, 32, 66

MNIST, 47–49, 52–58, 60

Monge, 6

problem, 12

MSE, 10, 49

negligible, 9

neighbourhood, 9

network architecture, 49

optimal transport, 11, 61

discrete, 32

dual, 33, 45

primal, 32, 45

dual problem, 17, 51

entropic, 35

dual, 39, 45, 51

primal, 36, 45

solution, 37

primal problem, 13

Polish space, 9, 63

potential, 18

precompact, 65

product σ-algebra, 63

product topology, 63

Quick, Draw!, 48, 49, 52–54, 56–58, 60

regularizer, 36, 51

ReLU, 49

sequentially compact, 64

signal processing, 6

Sinkhorn-Knopp fixpoint iteration, 41

support

of a function, 9

of a measure, 9

test data, 48

theorem

disintegration, 30, 65

duality, 27, 45, 50–52

fundamental theorem of optimal transport, 23

monotone convergence, 16, 65

Prokhorov, 14, 65

Weierstraß, 15, 65

tightness

of a measure, 14

of a set, 10

of prices, 18

of transport plans, 14

totally bounded, 9

72 INDEX

training data, 46, 61

transport map, 12

transport plan, 11, 37, 39, 51, 55

optimal, 13

existence, 16

variation

lower, 23, 63

total, 63

upper, 63

Wasserstein, 28

barycenter, 28

distance, 28, 37, 48, 50, 61

is a metric, 30, 37, 50

space, 28

is Polish, 32

weak convergence, 10

weak topology, 10

	Introduction
	Notation
	Optimal Transport
	The Monge Problem
	The Kantorovich Problem
	c-Transforms and the Dual Problem
	Fundamental Theorem of Optimal Transport
	Duality Theorem
	Wasserstein Distances
	Discrete Optimal Transport

	Sinkhorn Algorithm
	Entropic Optimal Transport
	Sinkhorn Algorithm
	Initializing Sinkhorn's Algorithm

	Sinkhorn-NN Hybrid Algorithm
	A Trained Initialization for the Sinkhorn Algorithm
	Training Data
	Test Data
	Network Architecture
	Why Not...?
	Training

	Results
	Error w.r.t. Iterations
	Speed

	Discussion
	Appendix
	References
	Index

